
Automating scientific reasoning is an important challenge
to AI. An automated tool can do boring and repetitive rea-
soning, freeing experts to do more difficult and creative

work. Indirectly, it can make explicit the knowledge and rea-
soning used by experts in the field. Finally, an automated tool
can consider all possibilities, sometimes exploring scenarios that
human experts may miss. 

This article discusses automating reasoning for dating geo-
logical landforms. Dating landforms is similar to investigating a
crime scene: from the information available on the surface, left
behind by an unknown series of events, experts must deduce
what happened in the past. In the example diagrammed in fig-
ure 1, subsurface rocks are exposed over time as the soil around
them erodes. A geoscientist would be faced with the situation
shown on the right of the figure; his task is to deduce the situa-
tion shown at the left, along with the processes that were at
work and the timeline involved. 

To accomplish this, a geoscientist first dates a set of rock sam-
ples from the present surface, then reasons backward to deduce
what process affected the original landform. This is a difficult
deduction: geological processes take place over an extremely
long period of time, and evidence remaining today is scarce and
noisy. Finally, experts in geological dating, like experts in any
field, are only human, and can be biased in favor of one theory
over another. 

In the face of these problems, experts form an exhaustive list
of possible hypotheses and consider the evidence for and
against each one—much like the AI concept of argumentation.
Our system to automate this reasoning, Calvin, uses the same
argumentation process as experts, comparing the strength of the
evidence for and against a set of hypotheses before coming to a
conclusion. We collected knowledge about how isotope dating
experts reason through interviews with several dozen geoscien-
tists. Confidence is key in this kind of reasoning, not only in the
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n Human experts in scientific fields routinely
work with evidence that is noisy and untrust-
worthy, heuristics that are unproven, and possi-
ble conclusions that are contradictory. We pres-
ent a deployed AI system, Calvin, for
cosmogenic isotope dating, a domain that is
fraught with these difficult issues. Calvin solves
these problems using an argumentation frame-
work and a system of confidence that uses two-
dimensional vectors to express the quality of
heuristics and the applicability of evidence. The
arguments it produces are strikingly similar to
published expert arguments. Calvin is in daily
use by isotope dating experts.



quality of evidence, but also in the knowledge that
is used to connect evidence to conclusion. Captur-
ing these elements required a novel instantiation
of confidence-based reasoning in an argumenta-
tion system. From these elements, Calvin produces
arguments almost identical to the reasoning pre-
sented by human experts. 

Calvin provides several contributions to AI and
to the larger scientific community. Its rule base is
an explicit representation of the knowledge of two
dozen experts in landform dating. It incorporates a
rich system of confidence that captures the rea-
soning of real scientists in a useful way. It is a fully
implemented and deployed system—a surprisingly
rare thing in the argumentation literature. Finally,
it is a real tool that is in daily use by real scientists.

In the following section, we discuss the general
problem of cosmogenic isotope dating, highlight-
ing its challenges and the approach that experts
take to solving it. Next, we describe how Calvin
uses argumentation to automate that process, and
finally, we discuss our results. 

Cosmogenic Isotope Dating 
Beginning from a set of samples collected from
boulders on a landform, an isotope dating expert’s
goal is to determine the absolute age of that land-
form. This section summarizes how experts work,
from sampling individual boulders to deducing an
age for an entire landform. 

The first step is to collect as many samples as
possible from the landform. A set of at least five
samples is best (Putkonen and Swanson 2003); five
to ten samples is about the norm. Experts would
prefer to collect far more samples, but often only a
handful of boulders suitable for sampling are avail-
able. While collecting samples, the expert also

makes qualitative field observations that are often
crucial for interpreting initial dating results. 

Once the expert has gathered a set of samples in
the field, he brings them to a lab for dating. He
finds the exposure age of each sample by deter-
mining its isotopic composition (some isotopes are
produced only by cosmic rays, which do not pen-
etrate soil deeply). Then he performs a series of cal-
culations using this composition and some of the
observations taken at the sample site (such as con-
tours of the surrounding area that would impede
some cosmic rays, called topographical shielding)
to find the length of time the sample has been at
the surface. This length of time takes the form of a
value with error bars. The expert’s next step is to
derive an absolute landform age. 

For most landforms, the surface exposure times
of boulders found on the surface are a true measure
of the age of the landform. This is because the
boulders are brought to the surface from deep
bedrock when the landform is formed. However,
different landforms are exposed to different events,
complicating the task of determining an overall
age for a landform. The simplest version of this
problem arises when the expert has a large number
of samples and all of their ages overlap, as shown
in figure 2a.  

Unfortunately, sample sets rarely have a perfect
range of overlap. Instead, initial sample ages are
usually spread over a wider range than the indi-
vidual sample errors as in figure 2b. In these cases,
the researcher must construct an explanation for
the spread in apparent ages, usually a geologic
process acting on the samples over time. Once he
has found a process that explains the majority of
the data, he uses further calculations and educated
guesswork to remove its effects from the sample set
and (hopefully) arrive at a single age for the land-
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form. In real landforms, more than one process
may have been at work, but experts generally focus
on isolating the one that most affected the ages of
the samples. 

Unfortunately, a single round of analysis does
not always serve to isolate a landform’s true age
with any confidence. In this case, the expert must
return to the original sample site (at great expense)
to seek further samples that disambiguate between
possible hypotheses or reinforce the evidence for a
likely process. For example, an expensive soil sam-
ple at depth can distinguish between several can-
didate processes. 

Most explanations that experts use for a spread
in apparent ages come from a short list of geologic
processes that affect the exposure times of the sam-
ples. Statistical “processes” may also explain the
data: for example, the age spread may be a result of
lab error or some form of missampling. 

Despite the relatively small number of candidate
processes, selecting an explanation for the appar-
ent age spread of a particular landform is not a sim-
ple task. Available data are noisy and untrustwor-
thy. Experts make mistakes in their observations in
the field. Moreover, the manifestation of one
process may be quite similar to the manifestations
of other processes. Experts usually make a final
decision about the process in effect on the basis of
heuristic reasoning. These heuristics frequently

contradict each other, and different experts also
hold contradictory opinions about the correct
heuristics. Addressing this contradiction was a
major factor in Calvin’s design, as we discuss in the
following section. 

Design and Architecture 
Calvin’s input is a set of samples that have already
been individually dated (experts use a different tool
for this step, such as ACE [Anderson et al. 2007]). It
analyzes these groups of samples to determine what
process affected the whole landform. Our selection
of an appropriate framework for solving this prob-
lem rested primarily on data we gathered during
extensive interviews. From these interviews, we
arrived at an argumentation framework as the best
one for Calvin. This selection led to a need to rep-
resent both expert knowledge and expert sources
and comparison of confidence. 

Interviews: Design Motivation 
We interviewed 26 experts in isotope dating,
amassing around 40 hours of formal interviews
and a similar length of informal interviews. Tran-
scripts of formal interviews can be found in Rass-
bach (2009). We learned that experts in isotope
dating consistently use the method of multiple
simultaneous hypotheses (Chamberlain 1965).
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Figure 2. Sample Ages, with Error Bars, Arranged by Sample Age.

a. Ideal distribution. b. Real distribution: Many samples, clustered, small errors; few samples, widely spread, large errors. The ideal distri-
bution is almost never encountered in real cases. 



Then they form arguments for and against every
hypothesis, judging their relative and absolute
strength to arrive at a solution. 

We learned two especially significant things in
our interviews. First, experts reason with contra-
dictory heuristics (inheritance is the term for sam-
ples being exposed before landform formation,
making their cosmogenic age older than the land-
form): 

Geologist: The thing about inheritance is, it’s usual-
ly thought about as quantized, not incremental …. 

Interviewer: So it shouldn’t be a spread of ages.

Geologist: Yeah; however, you can convince me you
would see a continuum. That is, not only do experts
disagree with each other, they sometimes disagree
with themselves; and second, experts themselves
are convinced that reasoning in their field takes
place in the form of argument. 

Interviewer: So we’re trying to understand what it is
that you do. 

Geologist: Well, mostly we argue with each other. 

The structure of expert reasoning revealed in these
interviews makes argumentation a natural frame-
work for automating expert reasoning. 

Overall Architecture 
Calvin’s engine is handwritten for this specific
problem. Because the needs for the engine are rel-
atively simple (most of the work of the reasoning
is really in confidence combination, described
below), writing an engine by hand allowed us to
address only our specific domain space. The engine
is capable of handling both symbolic reasoning
(items that can be essentially true or false) and con-
tinuous values. The total engine is about 500 lines
of Python code. 

At this time, Calvin’s knowledge base is com-
posed of 108 rules of varying complexity. The con-
struction of new rules is well-documented in the
source code (which is the distribution method),
and rules are simple Python structures. The experts
we communicated with were generally comfort-
able writing some amount of mathematical code
already. Users are invited to add new rules and it is
our expectation they will be able to do so
(although we have not been informed of any new
rules yet). We are in the very beginning stages of a
project allowing users to argue back at Calvin to
adjust the confidence in existing rules and add
new rules in a more natural fashion. 

Reasoning Process 
Most processes that affect a landform come from a
set list: (1) the possibility that no process at all was
at work, (2) exhumation, (3) clast erosion, (4)
inheritance, (5) vegetation cover, (6) snow cover,
and (7) the possibility that some samples are out-
liers. Other processes do sometimes affect land-

forms, but these seven are the most common. 
Exhumation is samples being exposed

(exhumed) after initial landform formation by the
erosion of the soil around them (since generally
boulders are sampled). Clast erosion is the erosion
of the sample boulders themselves. Inheritance,
discussed earlier, is prior exposure of sampled boul-
ders. Finally, various kinds of cover can interfere
with cosmic rays reaching the surface. Because the
possible processes are known, experts do not gen-
erally need to form novel hypotheses to find an
explanation for their data. Therefore, Calvin gives
every hypothesis from the list of “usual suspects”
equal consideration, as recommended in Cham-
berlain (1965) and by experts during our inter-
views.

Calvin’s main task is generating arguments for
and against each hypothesis in its list. This process
involves finding the applicable information in its
knowledge base, unifying that knowledge with the
data for the current set of samples, and using that
unification to construct a collection of arguments
about the conclusion. Performing these functions
requires a number of design elements: an engine,
rules, evidence, and arguments. Calvin considers
candidate hypotheses one at a time and builds
arguments for and against each hypothesis from
the top down using backward chaining. First, the
engine finds all the rules that apply to this hypoth-
esis—that is, those that refer to the same conclu-
sion. Unification is applied to each of these rules,
resulting in either a new conclusion to consider or
a comparison to input data. Calvin builds the most
complete possible set of arguments from its knowl-
edge base for and against each hypothesis. Figure 3
illustrates this backward-chaining process for an
argument about the snow cover on a landform.
Calvin’s engine finds the applicable set of rules,
considers each one, and then forms a confidence
in the overall evidence. Eventually Calvin will con-
sider every rule about snow cover in its knowledge
base and, if the data for unification exists, the rule
will be used in its resulting reasoning. Every rule in
Calvin contains both a conclusion and a template
for evidence that will support that conclusion. The
primary portion of a rule is an implication of the
form A C, where A may be either a single literal
or the conjunction (or disjunction) of several liter-
als, and C is the conclusion that A supports. Calvin
uses its rules to form an argument (not a proof) for
each element in A. From arguments in favor of A,
Calvin creates an argument for C. The representa-
tion of the argument contains both the rule and
the arguments for the antecedents. However,
stronger arguments against the conclusion may be
found, and Calvin’s belief in it overturned. This is
the main distinction between an argumentation
system and a classical first-order logic system. 

Calvin’s rules contain several additional ele-
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ments that serve important functions: a quality
rating, a guard, and a confidence template. The
quality rating and confidence template are used to
judge the relative and absolute strengths of argu-
ments. Guards prevent the engine from building
arguments using rules that are not applicable to
the current case. For example, Calvin knows that
snow cover is more likely if sample age is inversely
correlated with elevation. This is based on the
knowledge that snow cover blocks cosmic rays and
more snow falls at higher elevations, but only
makes sense for sample sets with large elevation
ranges. Otherwise, random differences in the data
might be interpreted as a meaningful correlation.
The guard on this rule tells the engine to ignore the
rule unless this precondition holds. Other argu-
mentation systems typically do not require an
explicit guard mechanism because they instead
defeat rules explicitly (Farley 1997, Morge and
Mancarella 2007). 

The antecedents in a rule are templates for the
evidence that will satisfy that rule, and therefore
argue for the rule’s conclusion. These patterns
define both what evidence is needed to satisfy the
rule and where that evidence can be located: usu-
ally, the choice is whether to build a subargument
for a new conclusion or refer directly to the data
input by the user. 

The arguments for and against a conclusion C
are a collection of trees constructed by Calvin’s
engine by unifying rules with evidence. Alterna-
tively, each argument can be viewed as a tuple of
the conclusion and support for the argument, as in
the Logic of Argumentation of Krause et al. (1995).
The root of each tree in the collection is a rule
whose conclusion is C, such as the rule A C.
Each child of this root is one of the literals in A
unified with evidence. This evidence may be either
additional collections of argument trees or a refer-
ence to the input data. 

Calvin’s backward-chaining engine generally
makes no distinction between negative and posi-
tive evidence. This is not a valid method in classi-
cal logic, where the knowledge that AC certain-
ly does not imply that ~A~C. However, Calvin’s
reasoning is intended to mimic that of experts,
who are not necessarily logical. Experts not only
apply rules in this negative fashion, they regard it
as a sufficiently defensible practice that they dis-
cuss it in published reasoning. For example, Jack-
son et al. (1997) include the statement that, since
there is no visual evidence of erosion, erosion is
unlikely in the area under consideration. Further-
more, the goal of Calvin’s reasoning is not to pro-
duce logically correct arguments. Rather, it is to
produce humanlike arguments. We know that
human beings routinely apply rules in this nega-
tive fashion (which is why courses in logical think-
ing put so much effort into telling us not to do so). 

Weighing Arguments 
Some arguments carry greater weight than others,
but precise comparisons between arguments are
not always easy to perform. For example, some
arguments for exhumation on a hypothetical
moraine might be as follows: (1) This moraine has
a flat crest, which is a visual sign of matrix erosion.
Matrix erosion causes exhumation. (2) This land-
form is a moraine, and moraines usually have a
matrix, which is soft and erodes quickly. Matrix
erosion causes exhumation. (3) This landform has
samples as old as 50 ky, and various processes often
disturb the surface and cause exhumation over
such a long time period. 

Clearly  arguments 1 and 2 are similar, sharing
the same root rule. Calvin would derive these argu-
ments as a single tree with two branches. Howev-
er, experts would consider argument 1 a stronger
argument for exhumation because it draws on
empirical observations rather than general knowl-
edge about moraines. This issue is often handled in
argumentation systems by referring to the speci-
ficity of arguments, with more-specific arguments
carrying more weight (Elvang-Gøransson, Krause,
and Fox 1993). Comparisons are less simple when
we consider argument 3: although it refers to infor-
mation that is specific to this landform, it seems
weaker than argument 1. Furthermore, the rela-
tionship between arguments 2 and 3 is surprising-
ly difficult to quantify. How, then, are we to judge
the strengths of these three arguments in a way
that preserves the intuitive relationships between
them? 

The central principal of Calvin’s confidence sys-
tem is that not only can specific evidence be triv-
ial or critical, but the knowledge used to connect
the evidence to the conclusion is also of variable
quality. Defining confidence with two dimensions
allows us to clarify why one argument is better
than another. Argument 1 uses high-quality evi-
dence and high-quality knowledge. Argument 2
uses high-quality knowledge but only moderate-
quality evidence, and argument 3 uses high-quali-
ty evidence but low-quality knowledge. Separating
the sources of confidence greatly enhances our
understanding of the strengths of these three argu-
ments. To instantiate this, Calvin represents confi-
dence as a two-dimensional vector. One element of
the vector is determined by which rules were used
to form the argument, and the other is determined
by how closely the observed situation matched
those rules. 

As part of our knowledge engineering process,
we asked experts about the strength of their belief
in their heuristics to determine the appropriate
qualitative validity to assign to each rule. General-
ly, experts were in agreement about what rules
were potentially valid and their approximate
acceptability. When they were not, our approach
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was to use the lowest confidence expressed (unless
this was the position of only one expert, strongly
refuted by several others). When Calvin unifies evi-
dence with a rule, it creates a confidence vector for
the rule’s conclusion from the closeness of the cur-
rent situation to the rule’s thresholds (closer to
thresholds gives less confidence) and the validity
assigned to the rule. Calvin’s engine uses this con-
fidence vector to find an overall confidence in
chains of arguments and in sets of argument trees. 

Calvin has 12 overall confidence levels, 3 levels
of applicability, or how closely evidence matches
rules, and 4 levels of validity, or the a priori
strength of each individual rule (and by extension,
the arguments generated using that rule). Evidence
can be partly applicable, mostly applicable, or high-
ly applicable. Knowledge (rules) can be plausible
(sounds reasonable, but no significant evidence for
the theory), probable (some evidence, but not
established or perhaps an emerging theory), sound

(almost all experts accept this theory), or accepted
(as certain as any scientific theory can ever be).
Each confidence level could apply to an argument
either for or against a conclusion. Because an intu-
itive complete ordering for Calvin’s confidence lev-
els does not seem apparent, we have imposed the
intuitive assumption that validity is more impor-
tant than applicability, but applicability should
certainly have a noticeable effect. This assumption
has been the main guiding principle in determin-
ing how Calvin works with confidence, especially
in difficult situations (for example, when one argu-
ment has higher validity but lower applicability
than an opposing argument). 

Using�Confidence. To judge the strengths of the
arguments it generates, Calvin manipulates confi-
dence values in two distinct ways. The first oper-
ates along a single chain of reasoning: snow cover
is more likely in cold areas; this area is cold because
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Figure 3. Illustration of Calvin’s Chaining of Rules. 

(a) Calvin’s engine finds all the rules in its knowledge base with a “snow cover” conclusion and puts them in an unordered set to consider
one at a time. (b) Calvin considers a rule that snow cover is more likely in cold areas. To apply this rule, Calvin must determine if the sam-
pled area is cold, data not input directly. (c) The main reasoning loop is called with a new conclusion, “the area is cold.” (d) Calvin sequen-
tially considers every rule about coldness. We show a rule about coldness that finds the average latitude and maximum elevation of the
sample site and compares those values to fixed thresholds. (e) The results of arguing about “is cold” are unified with the original rule about
“snow cover.” (f) Calvin moves on to the next rule about snow cover. 



it is at high elevation. Intuitively, it makes sense to
choose the validity of the least-valid rule for the
overall conclusion: the chain is only as strong as
its weakest link. Applicability is created by the
direct use of observed evidence. In this case, how
high the sampled area is, compared to what eleva-
tion is usually cold, determines the applicability. A
few rules lower or raise the applicability of knowl-
edge passed through them when they are applied.
This is to handle situations where an observation is
not specific to the knowledge being applied, as in
argument 2 at the beginning of this section. 

The second and more-complicated use of confi-
dence occurs when a number of different chains of
reasoning are all applied to the same conclusion
(because an argument is a collection of trees, for
example): (a) erosion is more likely because the
landform is old; (b) erosion is less likely because
there is no visible sign of it. A chain of reasoning
supporting the conclusion might have higher
validity but lower applicability than a chain of rea-
soning refuting the conclusion. There are often
several independent chains of reasoning both sup-
porting and refuting the conclusion, each with its
own confidence level. Calvin, like many existing
argumentation systems (Prakken 2005), assigns
confidence in two stages, first locally up a single
chain of reasoning and then globally across many
chains of reasoning arguing about the same con-
clusion. 

To determine its overall confidence in a conclu-
sion, Calvin first aggregates groups of lower-valid-
ity confidences into higher-validity confidences.
Then, if the highest-validity confidences for and
against the conclusion are at least two levels apart,
the highest-validity confidence is returned intact

as the overall confidence: it is judged sufficiently
strong to completely override the weaker rebutting
evidence. A difference of two levels of validity
implies a huge difference in overall confidence
strength—it is the difference between a logical tau-
tology and a statement such as “frost heaving
sometimes occurs in cold areas.” In contrast, a sin-
gle level of difference in validity is less drastic, for
example, the difference between the preceding
statement and a statement that “snow cover is
plausible in cold areas.” The resulting confidence
in other situations is illustrated in figure 4 and
table 1. Figure 4 indicates which confidence is con-
sidered greater and assigned to the overall conclu-
sion. However, when the two confidences are
close, Calvin reduces its overall confidence in the
conclusion according to how close the two com-
peting confidences are. Table 1 shows the possible
ranks of confidence reduction and when they
apply. 

An�In-Depth�Example. Following these opera-
tions can be confusing, especially when dealing
with a complex and unfamiliar domain. To best
illustrate Calvin’s confidence, let us consider a
question about whether a particular landform has
been subject to matrix erosion. Furthermore, for
this illustration, only two observations are avail-
able to the expert: the shape of the moraine
(whether it is sharply peaked or flat) and the gen-
eral shape of the sample age distribution. Moraines
are generally formed with a sharp crest that flat-
tens over time and expected to have highly clus-
tered sample ages. From these observations the
expert can judge the overall validity of whether
the landform has been subject to moraine erosion. 
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First, consider the case where you observe that
the moraine crest is quite sharp but the sample
ages are not perfectly clustered. Calvin would con-
sider the very sharp crest highly applicable evi-
dence (it is strongly observed) and unify it with its
knowledge that flat-crested moraines have been
subject to matrix erosion. In this case, it draws the
(logically incorrect) conclusion that, since this is
sharply crested, it has not eroded. The sharpness of
the moraine crest is generally a quite accurate indi-
cator of whether it has eroded, so Calvin can draw
the conclusion that the moraine has not eroded
with high applicability (because the moraine is
quite sharply crested) and sound validity (because
moraine shape is a good, but not perfect, indicator
of a lack of erosion). On the other hand, distrib-
uted sample ages are generally also a good indica-
tor that some process (often matrix erosion) has
affected the landform: in fact, let us assume that
there are enough samples that the indication of a
spread in ages is about as valid an indicator as the
moraine’s shape. However, since the spread is still
minimal, the conclusion that the moraine eroded
is only partly applicable (because the observation
is close to the threshold) with sound validity
(equal strength rule). Referencing the figure and
table for confidence combination, we find that
when the validities of the competing “for” and
“against” confidences are equal and the applicabil-
ity of the “for” confidence is higher than that of
the “against” confidence, as in this case, Calvin
selects the “for” confidence. According to the
table, since the validities are equal and the appli-
cability of the winning confidence is two levels
higher, we reduce the applicability of the winning
confidence by one. Overall, then, Calvin has built
a mostly applicable, soundly valid argument that
the moraine has not been subject to matrix ero-
sion. This confidence level seems to accurately
express the experts’ slightly cautious conclusion

(given this example problem in interviews) that
matrix erosion does not need to be corrected for. 

Now consider another case, where the moraine
is not totally flat but not as sharp as before and the
sample ages are significantly scattered. In this case,
the expert is less confident that the moraine still
has its original shape, yielding only mostly appli-
cable sound validity evidence that the matrix has
not eroded (same “sound” rule as before, unified
with less applicable evidence), and the sample
dates are significantly spread (and therefore high-
ly applicable evidence that matrix erosion has tak-
en place). Since the validities of the two confi-
dences are equal, Calvin takes the one with the
higher applicability: in this case, the argument for
matrix erosion. Referencing the combination table
again, we find that for equal validity and a win-
ning applicability one level higher, the actual
reduction in overall confidence depends on
whether the winning argument is “for” or
“against” the conclusion. This is actually intended
to reflect cautiousness about the more dangerous
conclusion. 

For experts in geology, the more dangerous con-
clusion is the one claiming that a specific process
occurred (from one of our interview subjects, “in
science, you cannot prove anything, you can only
disprove things”). Here, we have an “against” con-
fidence that is one applicability level higher than
the defeated “for” confidence, and Calvin reduces
the overall final confidence by two levels of appli-
cability, yielding a partly applicable sound argu-
ment that the matrix of the moraine has eroded. If
the samples were slightly more clustered (lower
applicability) or the crest of the moraine were
sharper (higher applicability), making the applica-
bilities equal as well, it would be much harder to
reach a firm conclusion as these confidences would
have the same weight. In that case, given no fur-
ther evidence, Calvin would declare that matrix
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Reduction Operation Occurs when 

Winner’s validity > loser’s validity 
AND 

Winner’s validity = loser’s validity AND   

Do nothing Winner’s applicability much greater   

Reduce applicability Winner’s applicability equal or slightly 
greater 

Winner’s applicability much greater   

Reduce applicability twice Winner is an argument against a conclusion 
Winner’s applicability is slightly greater   

Reduce validity and 
reduce applicability 

Winner is an argument for a conclusion 
Winner’s applicability is slightly greater   

 Argument applicabilities are equal 

Reduce validity twice Winner’s applicability is smaller   

Table 1. Reduction Operations in Confidence Combination.

Reduction operations are organized from smallest reduction to largest, from top to bottom. 



address exhumation in Ballantyne,
Stone, and Fifield (1998) was a major
oversight, given the amount of unclear
and conflicting evidence that may or
may not be indicative of it. Although
Calvin does not give exactly the same
argument, it has found a major gap in
the reasoning published by these
authors. 

In some cases, Calvin produced argu-
ments strikingly similar to the state-
ments in the paper. These similarities
were especially obvious when the
authors of the paper expressed signifi-
cant doubt about their conclusions. For
example, consider this passage from
Briner and colleagues (2005): 

The ca. 56 ka age on the Jago lateral
moraine appears to be a clear outlier
that we attribute to inheritance. The
age of the Okpilak ridge is uncertain;
correlation with the Jago ridge sup-
ports the suggestion that the two old-
er boulders from the Okpilak ridge
contain inherited isotopes. Alterna-
tively, both ridges might be pre-late
Wisconsin in age, and the young age
cluster on the Jago ridge records accel-
erated moraine degradation and con-
sequent boulder exhumation during
the late Wisconsin. On the other
hand, the stabilization age indicated
by the … ca. 27 ka age is consistent
with Hamilton’s (1982) age constraints
for deglaciation ….

This passage refers to a set of three
samples on the Jago lateral moraine
and four on the Okpilak ridge. On the
Jago moraine, two samples are around
27 thousand years old (27 ka), plus or
minus about 4000 years, and the third
sample is about 56 ka. The authors of
the paper argue that this 56 ka sample
is an outlier, due to inheritance, based
on the sample distribution and inde-
pendent evidence that the age of this
ridge should be around 27 ka. Howev-
er, a weakness in this argument is that
the Okpilak ridge, expected to be about
the same age as the Jago moraine, con-
tained two samples at about this 56 ka
age. An alternative theory is presented
that the older sample on the Jago
moraine is the true age, and the
younger samples were exposed by
matrix erosion more recently. 

Calvin finds it quite likely that the
56 ka sample is an outlier and attrib-
utes the difference to inheritance.
However it, too, grapples with explain-
ing the age of the Okpalik ridge: inher-

erosion may have taken place with
extremely low confidence. A reason-
able user response at that point would
be to seek evidence to improve the con-
fidence in some conclusion, perhaps by
returning to the sample site and taking
a soil sample (or analyzing a previous-
ly unexamined soil sample). 

Finally, let us consider a slightly
more complex case. The moraine has a
sharp crest, but there is evidence of soil
slides along the side, which could have
resharpened a flattened crest. Alterna-
tively, perhaps this expert has routine-
ly been a bad judge of whether a
moraine is truly sharply crested. The
sample distribution is somewhere
between mostly clustered and highly
distributed. Now we have reduced the
quality of knowledge about whether
the matrix has eroded based on the
sharp crest (we have reduced the qual-
ity assigned to the rule “flat crest 
matrix erosion”). The argument that
the moraine has not eroded is highly
applicable but only probably valid. On
the other hand, the evidence that the
moraine matrix has eroded is mostly
applicable and based on sound knowl-
edge. Since the validity of the argu-
ment for matrix erosion is higher, the
overall conclusion is that the matrix
has probably eroded. However, the
combination table shows that because
the applicability of the argument
against matrix erosion is higher, Calvin
is significantly less confident in that
conclusion than it might otherwise
have been. In fact, for the overall con-
fidence in the conclusion it subtracts a
level from the validity of the initial
“against” confidence, leaving us with
partly applicable probable confidence
that the matrix of the moraine has
eroded. This significant reduction
reflects the conflict and difficulty of
deciding for certain between the indi-
vidual arguments created by these two
observations. 

Calvin, then, reproduces expert rea-
soning by considering a set list of
hypotheses one at a time, creating
arguments for and against each
hypothesis. Evidence may take the
form of a single comparison or a com-
plete subargument. Calvin then weighs
these arguments based on the quality
of knowledge and certainty of evidence
used to generate them. This weighting

results in both absolute and relative
judgments of argument strength, as
well as indicating the strongest and
weakest points of each argument. 

Results 
Experts publish some of their qualita-
tive reasoning about a landform when
they publish its age. While this presen-
tation is usually incomplete, it typical-
ly includes information about both
rejected and accepted conclusions. We
used these to assess Calvin’s ability to
reproduce human expert reasoning.
We compared Calvin’s reasoning to the
reasoning in 18 randomly selected
papers discussing one or more isotope
dating problems in detail. These publi-
cations provide a broad basis of com-
parison. To compare Calvin’s output
with this prose, we extracted every
statement from these papers that made
an assertion and distilled it to the con-
clusion being argued and the evidence
presented for that conclusion. We then
entered all the data given in the paper,
ran Calvin, and compared its output to
these argument summaries. 

In total, we analyzed 18 papers con-
taining a total of 188 argument/posi-
tion statements. Calvin performed
quite well on arguments published in
these papers. It closely reproduced the
authors’ arguments 62.7 percent of the
time and produced similar arguments a
further 26.1 percent of the time.
Detailed results are presented in Rass-
bach (2009). In a few cases, Calvin pro-
duced arguments that did not appear at
all in the original paper. In one such
case, when examining Ballantyne,
Stone, and Fifield (1998), Calvin
argued that the samples were
exhumed. The main evidence for this
possibility is a disagreement with ages
determined for this landform through
other methods. To judge these results,
we asked a domain expert to assess
Calvin’s new argument. He responded: 

I think I see both sides here. From the
results, the fact that the ages are
younger than the C14 data means that
exhumation should be taken very seri-
ously … there is not much in the way
of material that could bury them.
However the peaks themselves are
eroding ….

Clearly choosing not to explicitly
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itance is supported by correlation with
the Jago moraine, the 25 ka expected
age, and the climate of the area. How-
ever, this implies that two-thirds of the
samples from that ridge contain sig-
nificant inheritance, leading to a con-
flicted overall argument for inheri-
tance. Calvin also finds significant
support for exhumation on both
moraines, coming to the same uncer-
tain conclusion as the authors. 

Conclusion 
Calvin is a fully implemented and
deployed argumentation system in use
by experts in cosmogenic isotope dat-
ing (it has been downloaded 178
times). Thus far, we have not had the
resources to study experts’ use of the
system in detail. However, informal
discussions indicate that students are
using it to ask more concrete questions
about professors’ reasoning and some
groups are using Calvin to assist in
checking that all appropriate hypothe-
ses have been considered. 

Because of its nature as a concrete
system, building Calvin required us to
solve a complex problem: how best to
describe and compare confidence. Our
solution, a two-element vector to repre-
sent confidence, and the associated sys-
tem for weighing rebutting arguments
appears to be novel. This system, while
complex in implementation, elegantly
captures the argument comparisons we
observed experts making. 

Calvin is an argumentation system
because our goal was to reproduce the
structure of expert reasoning. Although
isotope dating experts may speak in
terms of probabilities and chains of rea-
soning, they, like most scientists, do
not reason in a probabilistically or log-
ically correct manner. Thus, an inflexi-
ble system of probabilities or logic
would find it difficult to reproduce
accurately the reasoning of experts in
this field. Expert argument compar-
isons more closely resemble possibilis-
tic logic (Dubois and Fagier 2005, Far-
reny and Prade 1996) and our own
confidence system than either a
Bayesian or pure logic system. 

While Calvin’s initial results are
extremely promising, we are in the
process of planning a more rigorous
study (with automatic annotation

[White 2009]) to more completely test
its success at solving this problem. Fur-
thermore, we believe that Calvin’s con-
fidence system will translate well to
other problems where weighing com-
peting arguments is difficult—both in
other scientific fields such as forensic
linguistics and problems in other
domains, such as the game of bridge.
We hope to identify whether there is a
cognitive mechanism that weighs
rebutting arguments in a consistent
way across domains and, if so, to eluci-
date that mechanism. 

Our hope is that systems that pro-
duce humanlike reasoning (as opposed
to necessarily correct reasoning) will
eventually advance the science of AI in
two distinct ways. First, systems that
reason like us are more able to reveal
both our strengths and our weakness-
es, and perhaps someday the funda-
mental way our minds work. Secondly,
we hope that systems that reason in a
more human way may have higher
adoption rates: people are more com-
fortable conversing with other people,
and groups of people can be more cre-
ative in coming up with and reasoning
about ideas (though this is of course
not always the case). AI systems that
reason like people may be able some-
day to provide this valuable sounding-
board function without the cost of
training another human domain
expert. 
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