
In the context of solving difficult tasks, humans naturally
transfer problem-solving experience from previous tasks into
the new task. Recently, the artificial intelligence community

has attempted to model this transfer in an effort to improve
learning on new tasks by using knowledge from related tasks.
For example, classification and inference algorithms have been
extended to support transfer of conceptual knowledge (for a sur-
vey see Torrey and Shavlik [2009]). Likewise, reinforcement
learning has also been extended to support transfer (for a survey
see Taylor and Stone [2009]; Torrey and Shavlik [2009]).

This article presents an attempt to transfer structured knowl-
edge in the framework of automated planning. Automated plan-
ning is the branch of artificial intelligence that studies the com-
putational synthesis of ordered sets of actions that perform a
given task (Ghallab, Nau, and Traverso 2004). A planner receives
as input a collection of actions (that indicate how to modify the
current state), a collection of goals to achieve, and a state. It
then outputs a sequence of actions that achieve the goals from
the initial state. Given that each action transforms the current
state, planners may be viewed as searching for paths through
the state space defined by the given actions. However, the search
spaces can quickly become intractably large, such that the gen-
eral problem of automated planning is PSpace-complete (Bylan-
der 1994).

The most common approach to coping with planning com-
plexity involves defining heuristics that let the planner traverse
the search space more efficiently. Current state-of-the-art plan-
ners use powerful domain-independent heuristics (Ghallab,
Nau, and Traverso 2004; Nau 2007). These are not always suffi-
cient, however, so an important research direction consists of
defining manually or learning automatically domain-depen-
dent heuristics (called control knowledge). In the latter case,
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n In this article, we discuss the problem of
transferring search heuristics from one planner
to another. More specifically, we demonstrate
how to transfer the domain-dependent heuris-
tics acquired by one planner into a second plan-
ner. Our motivation is to improve the efficiency
and the efficacy of the second planner by allow-
ing it to use the transferred heuristics to capture
domain regularities that it would not otherwise
recognize. Our experimental results show that
the transferred knowledge does improve the sec-
ond planner’s performance on novel tasks over
a set of seven benchmark planning domains.



domain-independent machine-learning tech-
niques acquire the domain-dependent knowledge
used to guide the planner. The goal of transfer then
is to apply the experience gained in solving simple
source tasks to improve the performance of the
same planner in more complex target tasks (Borra-
jo and Veloso 1997).

Our work takes the idea one step further: we
study the use of heuristics learned on one planner
for improving the performance of a different plan-
ner. Importantly, the two planners use different
biases and strategies to search through the problem
space. We consider the domain-independent
heuristics part of the planner biases, while the
learned heuristics provide extra information that
let the planner overcome its biases and improve
the search. Although different planners use differ-
ent strategies to search for solutions, some plan-
ners share commonalities that make transfer pos-
sible. In general, domain-dependent heuristics can
be learned for a planner by observing how it trav-
erses the search space in a set of problems and
detecting opportunities for improvement. For
instance, a system could learn shortcuts that let
the planner find solutions faster, or it could obtain
knowledge to avoid dead ends that restrain the
planner from finding the solution. However,
detecting opportunities for improvement depends
very much on the way the planner explores its
search space. We hypothesize that heuristics
learned from one planner can be transferred to
another planner, thereby improving the latter’s
performance compared to learning heuristics from
scratch. Thus, the aim of this article is to explore
the transfer of heuristics between two planners
that share similarities in the metaproblem spaces
while using different biases to explore them.

In particular, we focus on transfer of control
knowledge between two planners: from TGP
(Smith and Weld 1999) to IPSS (Rodríguez-Moreno
et al. 2006). TGP is based on Graphplan (Blum and
Furst 1995) and so searches a reachability graph
with a bias toward parallel plans. Conversely, IPSS
derives from PRODIGY (Veloso et al. 1995) and
represents a class of state-based backward-chaining
planners that produce sequential plans. It also has
the advantage of supporting heuristics represented
in a declarative language. The planners overlap in
their use of backward-chaining search, but differ in
their search strategies (reachability graph versus
state-based search) and in the types of plans that
they produce (parallel versus sequential).

Our goal is to transfer the heuristics learned by
TGP (such as favoring parallel plans) into IPSS in
hopes of producing a bias that neither system
could have created independently. Zimmerman
and Kambhampati (2003) discuss many ways to
represent heuristics in planning, such as control
rules, cases, or policies. Our approach uses control

rules that guide the planner’s decisions by recom-
mending steps to take based on recognized condi-
tions. More specifically, our system generates these
control rules automatically by applying machine-
learning techniques in TGP, and then translating
them into the IPSS control-knowledge description
language. We selected to transfer from TGP to IPSS,
because both are backward-chaining planners (so
that planning concepts and search spaces are sim-
ilar) but they use different search biases, allowing
to test our hypothesis that transferring heuristics
from one planner to another one using different
search biases can help the second planner.

This article is organized as follows. The next sec-
tion provides background on the planning tech-
niques involved such as state- and graph-based
planning. After that, we describe the major ele-
ments of transfer, such as knowledge acquisition,
mapping between planning systems, and knowl-
edge refinement. In the remaining sections we
present experimental results, related work, and
conclusions and future work.

Planning Models and Techniques
In general, two elements typically define a plan-
ning task: a domain definition composed of a set of
states and a set of actions; and a problem description
composed of the initial state and a set of goals that
the planner must achieve. Here, a state description
includes a collection of grounded predicates and
functions, while an action includes the parameters
or typed elements involved in its execution, a set
of preconditions (a list of predicates describing the
facts that must hold for the action to apply), and a
set of effects (a list of changes to the state that fol-
low from the action). The planning task consists of
obtaining a partially ordered sequence of actions
that achieve all of the goals when executed from
the initial state. Each action modifies the current
state by adding and deleting the predicates repre-
sented in the domain-action effects. The following
example defines a planning problem in the Zeno-
travel domain.
Example 1.
The Zenotravel domain involves transporting peo-
ple among cities in planes, using different modes of
flight: fast and slow. The domain includes five
actions: (1) (board ?person ?plane ?city) boards a
person on a plane in a specified city, (2) (debark
?person ?plane ?city) a person disembarks from a
plane in a specified city, (3) (fly ?plane ?city0 ?city1
?fuel0 ?fuel1) moves the plane from one city to
another at slow speed and consumes one level of
fuel, (4) (zoom ?plane ?city0 ?city1 ?fuel0 ?fuel1
?fuel2) moves the plane from one city to another at
fast speed and consumes two levels of fuel, and (5)
(refuel ?plane ?city ?fuel0 ?fuel1) increases the
plane’s fuel level. 

In example 1, the question marks indicate the pred-
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icate variables, which the planner must bind to
domain constants to create specific action
instances. The example problem consists of trans-
porting two persons: person0 from city0 to city1,
and person1 from city1 to city0. There are seven
fuel levels (fli) ranging from 0 to 6 and there are two
planes initially at city1 and city0 with a fuel level of
fl3. Figure 1 shows the problem and two possible
solution plans. For example, the first action in Plan
1 represents that plane1 flies from city1 to city0
and the fuel level varies from fl3 to fl2.

To transfer heuristics from one planner to
another, we must define the planning task in terms
of a unified model. This model must account for
the important aspects of planning from a perspec-
tive of learning and using control knowledge, that
is, how planners traverse the search space so that
the heuristics can improve the search. The unified
model requires two definitions: a domain problem
space and a metaproblem space, which we now
provide.
Definition 1.
A domain problem space P is defined as a tuple <S,
s0, G, A, T>, where:

S is a finite collection of states.
s0  S is an initial state.
G is a collection of goals.
A is a collection of actions.
T : S  A  S is a transition function that maps states
and actions into a state. 

A solution plan for this problem is an ordered set
of actions, (a0, a1 … an), that transforms the initial
state, s0, into a terminal state, sn+1, in such a way
that si+1 = T(si, ai) (i  [0, n] ) and G  sn+1 (goals are
true in the end state). T is defined through the
effects of the actions in A that are defined in the
planning domain.
Example 2.
Continuing with the Zenotravel domain, a state in
S is described by a conjunction of literals, which are
simply grounded predicates. For Zenotravel, the
predicates include: (at ?p ?c) a person is in a city, (at
?a ?c) a plane is in a city, (in ?p ?a) a person is inside
a plane, (fuel-level ?a ?l) a plane has a level of fuel,
(next ?l1 ?l2) two consecutive levels of fuel. 

The initial state is s0 = {(at person0 city0), (at per-
son1 city1), (at plane1 city1), (at plane0 city0),
(fuel-level plane1 fl3), (fuel-level plane0 fl3), (next
fl0 fl1), (next fl1 fl2) ...(next fl5 fl6)}. The goals are
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Plan 1:
[1] (�y plane1 city1 city0 �3 �2)

Plan 2:

[2] (board person0 plane1 city0)
[3] (�y plane1 city0 city1 �2 �1)
[4] (debark person0 plane1 city1)
[5] (�y plane0 city0 city1 �3 �2)
[6] (board person1 plane0 city1)
[7] (�y plane0 city1 city0 �2 �1)
[8] (debark person1 plane0 city0)

[0,1] (board person0 plane0 city0) 
[0,1] (board person1 plane1 city1)
[1,2] (zoom plane0 city0 city1 �3 �2 �1)
[1,2] (zoom plane1 city1 city0 �3 �2 �1)
[2,3] (debark person0 plane0 city1)
[2,3] (debark person1 plane1 city0)
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Figure 1. Problem Example in the Zenotravel Domain.



G = {(at person1 city0), (at person0 city1)}. Figure 1
shows two possible plans for satisfying the exam-
ple goal given the start state. The first plan repre-
sents a total ordering over the solution and corre-
sponds to the type of output that planners such as
IPSS might generate. The second plan represents a
partial ordering over the solution and corresponds
to output of planners like TGP. Notice that the
solutions are not equivalent, as Plan 1 requires
additional steps for swapping the initial locations
of the two planes.

Although planners could search directly in prob-
lem spaces such as the one used in example 2, in
practice they tend to derive metaproblem spaces.
While a problem space models the domain, a
metaproblem space models the search process per-
formed by a particular planner. This is similar to
the notion of branching described by Geffner
(2001), which is a scheme used for generating
search nodes during plan construction.
Definition 2.
A metaproblem space Mp is defined as a tuple <M,
m0, MT, O, F>, where:
M is a finite collection of metastates.
m0  M is an initial metastate.
MT  M is a collection of terminal metastates.
O is a set of search operators, such as “apply an
action a  A to the current state s  S” or “select an
action a  A for achieving a given goal g  G,”
where S, A, and G are elements of the problem space
P.
F : M  O  M is a function mapping metastates m
and search operators o into a metastate. 

Metastates are planner dependent and include all
the knowledge that the planner needs for making
decisions during its search process. Usually each
metastate m contains the current state s (s  S in
the problem-space definition), but it can contain
other elements needed for the search such as the
pending (unachieved) goals. The following two
subsections provide examples of metaproblem
spaces used by TGP and IPSS for the Zenotravel
task discussed in examples 1 and 2.

TGP Planner 
TGP (Smith and Weld 1999) enhances the Graph-
plan algorithm temporally to support actions with
different durations. Although in this work, we use
only TGP’s planning component so that the result-
ing system is equivalent to Graphplan, we prefer
TGP because it supports future extensions to tasks
with a temporal component. TGP alternates
between two phases during planning. The first
phase, graph expansion, extends the planning
graph until it has achieved necessary, though pos-
sibly insufficient, conditions for plan existence
(that is, when all of the problem goals appear in
the graph for the first time and none are pairwise
mutually exclusive). The second phase, solution
extraction, performs a backward-chaining search

on the planning graph for a solution. If the search
cannot identify a solution, then the system begins
a new round of graph expansion and solution
extraction. 

A planning graph is a directed, leveled graph that
encodes the planning problem. The graph levels
correspond to time steps in the domain such that
each time step gets associated with two levels in
the graph. The first level for a time step contains a
node for each fact true in that time step, while the
second contains a node for each action whose pre-
condition is satisfied in the time step. For example,
fact level 0 corresponds to facts (grounded predi-
cates) true in the initial state, while action level 0
corresponds to the applicable actions in s0. Subse-
quent levels are similar, except that the nodes indi-
cate which facts may be true given the execution of
the actions in the preceding level, and which
actions may be applicable given the projected
facts. Specifically, the edges point either from a fact
to the actions for which it is a precondition, or
from an action to the facts whose truth values it
changes. TGP also computes lists of mutually
exclusive facts and mutually exclusive actions
based on the domain description.

Using the planning graph and the lists of mutu-
ally exclusive facts and actions, TGP now conducts
a backward search through the metaproblem
space. The planner begins with the goal state,
which it identifies as the lowest level that contains
all of the problem goals with no pair of goals on
the mutual exclusion list. In that search, a set of
(sub)goals g at level i yields a new set of subgoals
gat level i – 1, by first selecting one action for each
goal in g and then adding to g the actions’ pre-
conditions. The search terminates successfully
when the initial level is reached, or unsuccessfully
when all options have been explored. In the latter
case TGP extends the graph another level, and
then continues the search. When the search from
a subgoal set g at layer i fails, g is memorized or
remembered as unsolvable at i.

Figure 2 shows a simplified planning graph of
the problem in example 1. We display action nodes
only in the level where the action is compatible
(not mutually exclusive) with the other actions in
the solution plan. For example, the action instance
(zoom plane0 city0 city1 fl3 fl2 fl1) is displayed in
level 1 instead of in level 0 because it is mutually
exclusive with the action instance (board person0
plane0 city0) (they cannot be executed at the same
time). A proposition in gray color represents a con-
dition of an action that appears in a lower graph
level. Nodes that are not part of the solution plan
are not displayed.

In terms of the unified model, the backward-
chaining search on the planning graph that TGP
performs during the solution-extraction phase can
be described as follows.
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Each metastate m is a tuple {PG, Gp, L, l} where
PG is the plan graph, Gp is the set of pending
(unsolved) goals, L is a set of links (a, g) represent-
ing that the action a was used to achieve the goal
g (current partial plan), and l is the current plan-
graph level of the search. 

The initial metastate, m0 = {PGn, G, , ln} where
PGn is the plan graph built in the first phase up to
level n (this second phase can be called many
times), G is the set of top-level goals, and ln is the
last level generated of the plan graph (backward-
chaining search).

A terminal metastate will be of the form MT =
{PGn, , L, 0}, that is, the search reaches the initial
state (level 0) and all goals are solved (the set of
pending goals is empty). The solution plan can be
obtained from the actions contained in L.

The set of search operators O is composed of
only one operator (given the current metastate
{PG, Gp, L, l}): “for each goal g  Gp select (assign)
an action a  (A � no-op) for achieving it.” If a is
the empty operator, also named no-op, the goal per-
sists, that is, the goal will still be in the Gp of the
successor metastate. Otherwise, the preconditions
of each a are added to Gp, and each g is removed
from Gp. Also, the links (a, g) are added to L.

Figure 3 shows the metastates that TGP expands
for solving the problem in example 1. The initial
metastate m0 contains the plan graph until level 3,
PG3, and the problem goals, included in Gp. The
first search operator o0 assigns two instantiations
of the debark action to achieve the goals in Gp. F
maps (m0;o0) into m1 by: (1) replacing in Gp the
assigned goals for the preconditions of the two
debark instantiations (debark has two precondi-
tions, (at ?a ?c) (in ?p ?a)), (2) updating L with the
two assignments, and (3) decreasing the graph lev-
el l = 2. Metastate m2 is generated in a similar way
but with the action zoom whose preconditions are
(at ?a ?c) (fuel-level ?a ?l1) (next ?l2 ?l1) (next ?l3
?l2). All of them belong to the initial state (for both
instantiations), so no new pending goal is added to
Gp. Finally, m3 is a terminal state (Gp =  and l = 0),

and the solution plan (plan 2 displayed in figure 1)
is obtained from L.

TGP generates optimal parallel plans. In optimal
parallel planning the task is to compute a plan that
involves the minimum number of time steps
where at each time step many actions can be exe-
cuted in parallel (since they are independent).
Consider, for instance, a problem where two per-
sons P1 and P2 have to be transported from a loca-
tion A to another one B with a plane C. A valid
sequential plan would be (board P1 C A), (board P2
C A), (fly C A B), (debark P1 C B), (debark P2 C B).
However, since there is no causal relation between
the first two actions, nor between the two last
ones, a parallel plan could be represented as paral-
lel((board P1 C A), (board P2 C A)), (fly C A B), par-
allel((debark P1 C B), (debark P2 C B)). When
ignoring action durations, the length of the paral-
lel plan measures the total plan-execution time,
and it is called make-span. In the previous exam-
ple, the sequential plan would have a make-span of
five, while the parallel plan would have a make-
span of three. Actions that can be executed in par-
allel increase the length of the parallel plan in only
one unit.

IPSS Planner
IPSS is an integrated tool for planning and sched-
uling (Rodríguez-Moreno et al. 2006). The plan-
ning component is a nonlinear planning system
that follows a means-ends analysis (see Veloso et
al. [1995] for details). A backward-chaining proce-
dure selects actions relevant to the goal (reducing
the difference between the state and the goal) and
arranges them into a plan. Then, a forward chain-
er simulates the execution of these actions and
gradually constructs a total-order sequence of
actions. The planner keeps track of the simulated
world state that would result from executing this
sequence. It utilizes the simulated state in select-
ing actions.

In terms of the unified model, IPSS can be
described as follows.
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l=0 l=1 l=2 l=3
(at person0 city0)
(at plane0 city0)

(next �0 �1)
(next �1 �2)
(next �2 �3)

(board person0 plane0 city0) (in person0 plane0)
(at plane0 city0)
(fuel−level plane0 "3)
(next "1 "2)

(next "2 "3)

(fuel−level plane1 �3)

(fuel−level plane0 �3)

(at person1 city1)
(at plane1 city1) (board person1 plane1 city1)

(in person1 plane1)

(fuel−level plane1 "3)
(at plane1 city1)

(zoom plane0 city0 city1 �3 �2 �1)

(zoom plane1 city1 city0 �3 �2 �1)

(at plane0 city1)
(in person0 plane0)

(at plane1 city0)
(in person1 plane1)

(debark person0 plane0 city1)

(debark person1 plane1 city0)

(at person0 city1)

(at person1 city0)

Figure 2. Simplified Planning Graph of the Problem in Example 1.



Each metastate m is a tuple {s, Gp, L, g, , a, P}
where s is the current state, Gp is the set of pending
goals, L is a set of links (a, g) representing that the
action a was used to achieve the goal g, g is the goal
on which the planner is working,  is the name of
an action that the planner has selected for achiev-
ing g, a is an action that the planner has selected
for achieving g,1 and P is the current partial plan
for solving the problem.

The initial metastate, m0 = {s0, G, , , , , }.
so is the initial state of the problem and G repre-
sents the goals the planner has to achieve.

A terminal metastate will be of the form MT = {st,
, Lt, , , , P} such that G  st, Lt will be the

links (a, g) between actions and goals, that is, (a, g)
 Lt if the planner chooses a to achieve g, and P is
the solution plan.

The set of search operators O is composed of
(given the current metastate {s, Gp, L, g, , a, P}):
“select a goal g  Gp”, “select an action name  for
achieving the current goal g”, “select a grounding
for the  parameters” (the grounded action is kept
in a), and “apply the current action a to the current
state s.”

Figure 4 shows the beginning of the search tree
that IPSS expands for solving the problem in exam-
ple 1. IPSS planning-reasoning cycle involves sev-
eral decision points: (1) select a goal from the set of
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PG3, l=1

Gp  ={ (in person0 plane0), (in person1 plane1)}

L={ (debark person0 plane0 city1) : (at person0 city1)
 (debark person1 plane1 city0) : (at person1 city0)
 (zoom plane0 city0 city1 �3 �2 �1) : (at plane0 city1)
 (zoom plane1 city1 city0 �3 �2 �1) : (at plane1 city0) }   

Gp ={ (at person0 city1), (at person1 city0) }

PG3, l=3

L={}

m0

Assign (debark person0 plane0 city1) to (at person0 city1)
Assign (debark person1 plane1 city0) to (at person1 city0)

m1

Gp  ={ (at plane0 city1), (in person0 plane0)
 (at plane1 city0), (in person1 plane1) }

L={ (debark person0 plane0 city1) : (at person0 city1)
 (debark person1 plane1 city0) : (at person1 city0) }

PG3, l=2

m2

Assign (zoom plane0 city0 city1 �3 �2 �1) to (at plane0 city1)
Assign (zoom plane0 city0 city1 �3 �2 �1) to (at plane0 city1)

Assign (board person0 plane0) to (in person0 plane0)
Assign (board person1 plane1) to (in person1 plane1)

m3
PG3, l=0

Gp  ={ }

L={ (debark person0 plane0 city1) : (at person0 city1)
 (debark person1 plane1 city0) : (at person1 city0)
 (zoom plane0 city0 city1 �3 �2 �1) : (at plane0 city1)
 (zoom plane1 city1 city0 �3 �2 �1) : (at plane1 city0)
 (board person0 plane0) : (in person0 plane0)
 (board person1 plane1) : (in person1 plane1) }  

ο0=

ο1=

ο2=

Figure 3. TGP Metastates of the Problem in Example 1.



pending goals; (2) select an action to achieve a par-
ticular goal; (3) select groundings to instantiate the
chosen action; (4) apply an instantiated action
whose preconditions are satisfied or continue sub-
goaling on another unsolved goal. Uppercase text
represents actions applied and added to the solu-
tion plan. We show the search operator applied at
the right side of each node that corresponds to the
decision the planner took. 
Example 3.
IPSS finds Plan 1 displayed in figure 1 to solve the
problem in example 1. The first metastates and
search operators that IPSS applies to find this plan
are:
1. m0 = {s0,(at person0 city1)(at person1 city0),
,, , , }

o0=“select goal (at person0 city1)” 
2. m1 = {s0,(at person1 city0),, (at person0
city1),,,}

o1=“select action debark” 
3. m2 = {s0,(at person1 city0),, (at person0 city1),
debark,,,}

o2=“select groundings (debark person0 plane1
city1)” 

When IPSS selects an action, it adds the action
preconditions to Gp. For example, (in person0
plane1) is a precondition of the (debark person0
plane1 city1), so o3 can select it (see figure 4).

When IPSS applies an action, it changes the state s
by adding and deleting the action effects.

Transfer Learning Task
The goal of this work with respect to transfer is to
exploit the differences between the two planning
systems to create one that outperforms either TGP
or IPSS individually. In this case, TGP generates
optimal parallel plans (minimum make-span),
while IPSS generates sequential plans. In problems
with many equal resources, IPSS search bias (or
search algorithm) does not take into account the
make-span of solutions, so it does not try to mini-
mize it. When it selects an object to ground an
action, it does not reason on make-span, but on
trying to select an object that can achieve the goal.
Plan 1 displayed in figure 1 provides an example.
IPSS finds Plan 1 in contrast to the optimal paral-
lel plan, Plan 2, found by TGP. On the other hand,
the Graphplan algorithm has to generate all possi-
ble instantiations of all actions before searching for
a solution, which often causes a combinatorial
explosion in large-scale problems. By combining
the biases of these two approaches, we aim to pro-
duce a planning system that performs well on both
types of problems.
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(at person0 city1)
debark

(debark person0 plane1 city1)
(in person0 plane1)

board
(board person0 plane1 city0)

(at plane1 city0)

�y
(�y plane1 city1 city0 �3 �2)

FLY PLANE1 CITY1 CITY0 FL3 FL2
BOARD PERSON0 PLANE1 CITY0

(at plane1 city1)
�y

(�y plane1 city0 city1 �2 �1)
(FLY PLANE1 CITY0 CITY1 FL2 FL1)

DEBARK PERSON0 PLANE1 CITY1
(at person1 city0)

o9=apply action

o8=select groundings

o7=select action

o6=select goal

o5=select groundings

o4=select action

o3=select goal

o2=select groundings

o1=select action

o0=select goal

Figure 4: Partial Search Tree That IPSS Expands to Solve the Problem in Example 1.



Toward this end, we implemented a deductive
learning method to acquire control knowledge by
generating bounded explanations of the problem-
solving episodes on TGP, named GEBL (Graphplan
explanation-based learning, or GraphplanEBL).
The learning approach builds on HAMLET (Borra-
jo and Veloso 1997), an inductive-deductive sys-
tem that learns control knowledge in the form of
PRODIGY control rules. We have also implement-
ed a translator from the rules learned in TGP to the
representation language for heuristics in IPSS. Fig-
ure 5 shows the transfer of knowledge between
planner TGP and IPSS. GEBL learns heuristics from
the experience of TGP solving problems from dif-
ferent planning domains. IPSS uses these heuris-
tics, after a translating process, to improve the effi-
ciency on solving new planning problems. The
figure also shows the heuristics that HAMLET
learns from IPSS (used to compare our approach).

From a perspective of heuristic acquisition
(without considering the transfer task yet), the key
issue consists of learning how to select search oper-
ators of the metaproblem space given each metas-
tate. The learned heuristics may be viewed as func-
tions, H : M  O, that map a metastate m into a
search operator: H(m)  o. This is due to the fact
that the decisions made by the planner (branch-

ing) that we would like to guide are precisely what
search operator to apply at each metastate. We
define these H(m) by a set of control rules, if con-
ditions(m) then select o, in which m is a metastate
and o is a search operator of the metaproblem
space (metaoperator). If some conditions on the
current metastate hold, then the planner should
apply the corresponding search operator. In the
transfer task, we learn the control rules in one
planner, but they have to guide the search of a dif-
ferent planner.

Problem Setting
The transfer setting consists of two planning tech-
niques, Pl1 and Pl2, a set of domain problem spaces,
, and two sets of metaproblem spaces, 1 and 2.
The transfer task is then to learn heuristics in Pl1 (a
collection of H1(m1) functions) from Pl1 search
episodes, and then map them into heuristics for Pl2

(a collection of H2(m2) functions) that can guide
future Pl2 search episodes. Formally:

P =< S, s0, G, A, T > 
Mp1 =< M1 m1

0, M1
T, O1, F1 >  1

Mp2 =< M2 m2
0, M2

T, O2, F2 >  2

H1(m1): {hi | hi = (if conditions(m1) then select O1)}
H2(m2): {hi | hi = (if conditions(m2) then select O2)}

The source tasks consist of several domain problem
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Figure 5. Transfer of Knowledge from TGP to IPSS.



spaces in  in which s0 and G differ among them
and the other elements are equal. Thus, the source
includes a collection of training problems, each
defined by a given initial state and goals, for a sin-
gle domain. The target tasks consist of a second
collection of problem spaces such that st

0 and Gt

differ among them and from s0 and G. Pl1 searches
the solution plans in Mp

1  1 and Pl2 in Mp2  2.
Again, all Mp1  1 have equal M1, O1, and F1 sets;
and all Mp2  2 have equal M2, O2 and F2 sets (for
each planning problem, the planners search for the
solution in a particular metaproblem space, but
each planner always uses the same strategy to solve
the problems). Therefore, the transfer method
defines explicit mappings between: (1) source and
target tasks, (2) metastates, M1  M2, and (3) meta-
operators, O1  O2.

For example, the metastate m0 and metaopera-
tor o0 displayed in figure 3 map into the metastate
m1 and the metaoperators o1 and o2 displayed in
example 3. TGP chooses action (debark person0
plane0 city1), but IPSS chooses other grounding for
its parameters, (debark person0 plane1 city1). So,
the TGP metaoperator o0 should be mapped into
two IPSS metaoperators: IPSS o1 and a new o2 with
the TGP grounding for the parameters (plane0
instead of plane1).

Source and target tasks were automatically gen-
erated using random problem generators. The
knowledge acquisition method learns the heuris-
tics from all the source problems and all the heuris-
tics are used for solving all target tasks. There is no
explicit task selection mechanism to select the
source tasks that are more similar to the target ones
to guard against negative transfer.2 This differs
from methods such as MASTER, which can meas-
ure task similarity through model prediction error,
used in transfer learning for reinforcement learn-
ing (Taylor, Jong, and Stone 2008).

Proposed Solution
A possible solution to the posed problem is to
define languages for representing heuristics that
consider metastate characteristics and metaopera-
tors, and then to find similarities between M1 and
M2 characteristics and O1 and O2 metaoperators.
Metastate characteristics, called metapredicates, are
queries to the current metastate of the search, such
as whether some literal is true in the current state
(Veloso et al. 1995). In this way, metastates are
described by general characteristics and each plan-
ner defines its own specific implementation. This
makes mappings for transfer easier to define. In
general, there might be several ways of defining
the mapping between both metastates, but as we
will shortly explain, we have chosen to implement
the mapping for which we have obtained best
results.

Our approach to transfer control knowledge

between two planners Pl1 and Pl2 has five parts: (1)
a language for representing heuristics for Pl1 (H1

functions); (2) a knowledge-acquisition method to
learn H1 functions from Pl1 search episodes; (3) a
mapping between the metaproblem space of Pl1

and the metaproblem space of Pl2, which is equiv-
alent to provide a translation mechanism between
H1 and H2 functions; (4) a language for represent-
ing heuristics for Pl2 (H2 functions); and (5) an
interpreter (matcher) of H2 functions in Pl2. Given
that IPSS already has a declarative language to
define heuristics (part 4), and an interpreter of that
language (part 5), we only needed to define the
first three parts. The heuristic language for Pl1 (step
1) should ideally be as similar as possible to the
language used by Pl2, IPSS, in order to simplify the
mapping problem. With this in mind, we bor-
rowed as many metapredicates as possible from the
IPSS declarative language. In the next section, we
discuss the heuristic learning methods, and then
focus on the mapping problem in the Knowledge
Reuse section.

Knowledge Acquisition
Our learning systems rely on explanation-based
learning (EBL) to acquire the knowledge that gets
transferred between the two planners. EBL is a
machine-learning technique that takes advantage
of a complete domain theory to generalize from
training examples. In the context of planning, the
domain description provides the needed theory
while the search trace produced by the planner
provides the training examples. In the present
case, GEBL is used to generate control knowledge
from TGP. As explained earlier, both planners
search a metaproblem space. GEBL generates
explanations about why particular local decisions
made by the planner during the search process led
to a success state. GEBL generalizes these explana-
tions into TGP control rules or heuristics (H1). In
particular, the GEBL process includes two stages
(Borrajo and Veloso 1997):

Stage One: Labeling the search tree. (1) Generation
of a trace: TGP solves a planning problem and
obtains a trace of the search tree. (2) Identification
of successful decisions: GEBL identifies the metas-
tates located in the tree leaves and uses them to
determine which decision nodes led to the solution. 

Stage Two: Generating control rules. (1) Generation
of specialized rules: The system creates new rules
from two consecutive successful decision points by
selecting the relevant preconditions. They are spe-
cialized in the sense that only constants appear in
their condition and action parts. (2) Generaliza-
tion of control rules: GEBL generalizes constants in
the specialized control rules to variables, and
applies goal regression to reduce the number of
rule conditions. GEBL follows the preceding
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process for every training planning problem. This
creates a set of control rules from every problem in
the training set. In the following subsections, we
provide more detail for each step in the process.

Labeling the Search Tree
First, TGP generates a search tree by solving a plan-
ning problem. The search tree contains the deci-
sions made by the planner in the metaproblem
space. Each decision point (or node) is a metastate
with a set of successors, and every successor is an
applicable search operator that leads to a successor
metastate. The search tree includes three types of
nodes.

Success nodes belong to a solution path. Failure
nodes arise in two ways: when consistent actions
that achieve all goals in the node cannot be found,
or when all of the node’s children fail. Memo-fail-
ure nodes were never expanded. This happens if the
goals were previously memorized as nogoods (fail-
ure condition of Graphplan-based planning).

All nodes in the search tree are initially labeled
as unexpanded (memo-failure). If a node fails dur-
ing the planning process, its label changes to fail-
ure. When the planner finds a solution, all the
nodes that belong to the solution path are labeled
as success.

For example, all the metastates displayed in fig-
ure 3 can be labeled as success. As the solution was
reached without backtracking, there are no failure
nodes in this search trace. And, when TGP reaches
the terminal metastate m3 all nodes between the
root node (m0) and the solution node (m3) can be
labeled as success.

Generating Control Rules
After labeling the search tree nodes, GEBL gener-
ates specialized control rules from pairs of consec-
utive success nodes separated by one or more fail-
ure nodes. The rationale is that if there is no
possibility of failure between two successful metas-
tates, then default decisions are sufficient. This
mode of learning is typically called lazy learning,
and from this point of view, memo-failure nodes
belong to the same category as success nodes since
the planner does not explore them. Note that we
call the resulting rules specialized because they
contain only constant objects, with no variables.

Learning control rules from correct default deci-
sions can be useful in some cases. For instance,
after the rules have been generalized, they could
apply to future situations different from the ones
they have been created from. This second mode of
learning is named eager learning (Borrajo and
Veloso 1997). GEBL can use both learning modes.

Lazy learning is usually more appropriate when
the control knowledge is obtained and applied to
the same planner to correct only the wrong default
decisions. However, eager learning may be useful

for the purpose of transferring knowledge between
different planners, as is the case of this article,
because the metaproblem space will be searched
differently and default decisions will also differ.
Figure 6 shows the rules generated from a fictitious
search tree. The search starts in level 7 (l7) where
problem goals (G) appear and L is still empty. Each
metastate (also named decision point) has a differ-
ent set of pending goals (such a G1, G2, and G8),
set of assignments (such a L1, L2, and L8) and
graph-plan level (such l7, l6, and l0). When a node
fails, the search process backtracks and the affect-
ed nodes are labeled as failure (see decision points
(G2, L2), (G9, L9) and DPx1). When the search
reaches the terminal node DPy4 all nodes between
the root node and DPy4 are labeled as success.
Afterward, the rule-generation process starts gen-
erating the rules displayed in figure 6.

Learned control rules have the same syntax as in
PRODIGY, which can select, reject, or prefer alter-
natives. The conditions of control rules refer to
queries, called metapredicates, to the current metas-
tate of the search. PRODIGY provides several
metapredicates for determining whether some lit-
eral l is true in the current state, l  s, whether
some literal l is the current goal, l = g, whether
some literal l is a pending goal, l  Gp, or some
object is of a given type. However, the language for
representing heuristics also admits coding user-
specific functions.

GEBL learns two kinds of control rules: goal
selection and operator selection. The inputs for
rule learning are the two consecutive success
metastates with their goal and assignment sets.
The select goals rules learn the goal that persists in
the decision point (when just one goal persists)
and the select operator rules learn to select the
actions that fulfill the goals in the decision point.
One rule is created for each achieved goal.

As an example, GEBL would not create any rules
from the tree in figure 3 when in lazy learning
mode, because there are no failure nodes and no
backtracking. On the other hand, in eager mode, it
would create two rules from every pair of decision
nodes. For instance, from the first two decision
points m0 and m1, one of the rules would choose
the action (debark person0 plane1 city1) to achieve
the goal (at person0 city1) (the second rule is
equivalent with respect to the second goal).

GEBL generalizes the initial control rules by con-
verting constants to variables (denoted by angle
brackets). In order to generalize them further, the
number of true-in-state metapredicates is reduced
by means of a goal regression (as in most EBL tech-
niques [DeJong and Mooney 1986]). Only those lit-
erals in the state strictly required, directly or indi-
rectly, by the preconditions of the action involved
in the rule (the action that achieves goal) are
included.
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One of the select operator rules generated from
the m0 and m1 decision points of figure 3 is dis-
played in figure 7. This rule selects the action
debark for achieving the goal of having <person0>
in <city1>. The rule selects the most convenient
plane (<plane1>) for eventually debarking: the
plane with enough fuel to fly that is in the same
city as the person that will debark.

Figures 8 displays an example of a select goal
rule. It chooses between two goals that involve
moving either <person0> to <city1> or <person1>
to <city0> (the arguments of the metapredicates
target-goal and some-candidate-goals). The rule
selects moving <person1> because she or he is in a
city where there is a plane <plane1> with enough
fuel to fly.

Knowledge Reuse
The final step in transferring control rules generat-
ed by TGP into IPSS is to translate the GEBL rules
into the IPSS control language. The translation
must include both the syntax (small changes giv-
en that we have built the control-knowledge lan-
guage for TGP based on the one defined in IPSS)
and the semantics (translation of types of condi-

tions in the left-hand side of rules, and types of
decisions — search operators of the metaproblem
space). So, the mapping must support the transla-
tion of the left-hand side of rules (conditions refer-
ring to metastates) and the right-hand side of rules
(selection of a search operator of the metaproblem
space).

With respect to the right-hand side of the con-
trol rules, the translator takes the following steps.

Step One. Decide which goal to work on first. IPSS
has a specific search operator for choosing a goal
from the pending goals; on the contrary, the TGP
search operator always assigns an action (including
the no-op) for each goal in the set of pending goals.
However, when TGP selects the no-op to achieve a
goal (in the backwards process), this means the
planner decides that it is better to achieve the goal
in levels closer to the initial state. Therefore, in
case only one goal persists, it can be transferred to
the way in which IPSS would select that goal. 

Step Two. Each TGP action for achieving a par-
ticular goal must be split into two IPSS metaspace
operators: one for selecting the action name
(debark) an another for instantiating it ((debark p1
pl1 c0)). This means that for each select-operator
control rule learned by GEBL, two control rules
have to be defined for IPSS. From the IPSS side,
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three types of control rules can be learned in TGP
to guide the IPSS search process: select goals, select
operator (select an action), and select bindings
(select the grounding of the action parameters)
rules. Select goals rules are the rules generated by
TGP when one goal persists (as explained in point
1), and the two other types of rules come from the
TGP select-operator rules (as explained in point 2).

The equivalence between metastates is not
straightforward (for translating the conditions of
control rules) due to the differences between the
search algorithms. IPSS performs a kind of bidirec-

tional depth-first search, subgoaling from the
goals, and executing actions from the initial state.
TGP performs a backward search on the planning
graph that remains unchanged during each search
episode. The difficulty arises in defining the state s
that will create the true-in-state conditions of the
control rules. While IPSS changes the state while
planning, given that it applies actions while
searching for the solution, TGP does not apply any
action. It just propagates all potential literals of the
state that could be true after N levels of action
applications. Thus, TGP does not have an explicit
state at each level, but a set of potential states.

When TGP learns rules, we must consider two
possibilities. The simplest one is that the state s to
be used in control rules is just the problem initial
state s0. The second possibility is that TGP persists
a goal that was already achieved by IPSS (as
explained earlier). The state s is therefore the one
reached after executing the actions needed to
achieve the persisted goals in the TGP metastate.
To compute this state, we look in the solution plan,
and progress s0 according to each action’s effects in
such a partial plan.

Equivalent metastates are computed during rule
generation, and a translator makes several trans-
formations after the learning process finishes. The
first splits the select-operator control rules into
two: one to select the action and another one to
select its instantiation. The second translates true-
in-state metapredicates referring to variable types
into type-of-object metapredicates.3 Finally, the
translator deletes those rules that are more specific
than a more general rule in the set (they are sub-
sumed by another rule) given that GEBL does not
perform an inductive step.

Experimental Results
We conducted several experiments to examine the
utility of our approach, under the hypothesis that
we can improve IPSS performance by transferring
knowledge generated by GEBL. We compare our
work with HAMLET (Borrajo and Veloso 1997), a
system that learns control rules from IPSS problem-
solving episodes (see figure 5).

Our experiments employed a subset of bench-
mark domains taken from the repository of plan-
ning competitions4 (the STRIPS versions, since
TGP can only handle the plain STRIPS version).
Within each of these domains, we trained HAM-
LET and GEBL against one set of randomly gener-
ated source problems and tested them against a dif-
ferent random set of target tasks. HAMLET learns a
set of domain-dependent heuristics from these
source problems by performing an EBL step on IPSS
traces followed by induction to acquire control
rules. GEBL learns a different set of domain-depen-
dent heuristics by solving source problems with
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(control-rule rule-ZENO-TRAVEL-ZENO1-e1
 (if (and (current-goal (at <person0> <city1>))
  (true-in-state (at <person0> <city0>))
  (true-in-state (at <plane1> <city0>))
  (true-in-state (fuel-level <plane1> <�1>))
  (true-in-state (aircraft <plane1>))
  (true-in-state (city <city0>))
  (true-in-state (city <city1>))
  (true-in-state (�evel <�0>))
  (true-in-state (�evel <�1>))
  (true-in-state (next <�0> <�1>))
  (true-in-state (person <person0>))))
 (then select operators (debark <person0> <plane1> <city1>)))

Figure 7. Example of Select Operator Rule in the Zenotravel Domain.

(control-rule regla-ZENO-TRAVEL-PZENO-s1
 (if (and (target-goal (at <person1> <city0>))
  (true-in-state (at <person1> <city1>))
  (true-in-state (at <person0> <city0>))
  (true-in-state (at <plane1> <city1>))
  (true-in-state (fuel-level <plane1> <�2>))
  (true-in-state (aircraft <plane1>))
  (true-in-state (city <city0>))
  (true-in-state (city <city1>))
  (true-in-state (�evel <�1>))
  (true-in-state (�evel <�2>))
  (true-in-state (next <�1> <�2>))
  (true-in-state (person <person0>))
  (true-in-state (person <person1>))
  (some-candidate-goals ((at <person0> <city1>)))))
 (then select goals (at <person1> <city0>)))

Figure 8. Example of Select Goals Rule in the Zenotravel Domain.



TGP. In the target task, we use IPSS to solve the test
problems three times: without heuristics, with
heuristics acquired by HAMLET, and with heuris-
tics acquired by GEBL.

Note that we trained GEBL and HAMLET on
slightly different sets of source problems in order
to treat both algorithms fairly. The reason is that
GEBL suffers from the utility problem (of generat-
ing many overspecific control rules) common to
EBL systems, which can be controlled by limiting
the number of training problems and goals. In con-
trast, HAMLET incorporates an inductive module
that diminishes the utility problem, but also
requires more training data as it incrementally
learns from experience generated by acquired con-
trol rules. Our solution was to train GEBL on a sub-
set of the source problems we employed to train
HAMLET.

Table 1 illustrates the number and complexity of
the source and target problems we presented to
both systems. Among the source tasks, column R
identifies the number of generated rules, column
TR displays the number of training problems, and
column G measures problem complexity by the
range in the number of supplied goals. The table
also displays the complexity of the target prob-
lems.

Table 2 shows the percentage of target problems
IPSS solved alone, and by using control heuristics
acquired through HAMLET and GEBL. The table
also shows the percentage of problems solved by
the TGP planner. In general, we tested against 100
random target problems in each domain. The
exceptions were Miconic, and Gripper, where we
employed the 140 and 20 target problems used
respectively in the domains for the planning com-
petition. We applied a 60 second time limit across
all target problems, and varied the number of goals
per problem as shown in table 1. The difference
between source and target task complexities is rel-
evant: source tasks have at most 5 goals, while tar-
get tasks have up to 58, as in the Robocare domain
(see table 1).

The results show that IPSS solved a greater per-
centage of target problems using control rules
acquired by GEBL vs. HAMLET. This result holds in
all but one domain (Miconic). Transferred knowl-
edge also improved IPSS performance in all but one
domain (Robocare), even to the point that per-
formance with transfer surpassed TGP levels in
three domains; Zenotravel, Miconic, and Gripper.

However, control rules acquired through HAM-
LET reduced IPSS performance in Driverlog and
Robocare. We attribute this behaviour to the
intrinsic problems of the HAMLET learning tech-
nique: first, the utility problem common to EBL
methods, and second, the fact that incremental
relational induction techniques can fail to con-
verge to a set of control rules in the available time.

Here, HAMLET failed to find any control rules in
the Rover domain.

The transferred knowledge also improves the
efficiency of the problem solver’s search and the
quality of its solutions. We measure efficiency by
the number of nodes the planner generates en
route to a solution (this relates to both memory
consumption and search time). We measure plan
quality by the maximum length of the parallel
plan structure in the target problem’s solution,
called its make-span. Figure 9 shows the percentage
decrease in the number of nodes and the make-
span due to transferred knowledge across all
domains. In particular, we display the percentage
decrease in the number of nodes (or make-span)
measured for the problems solved by IPSS with
GEBL rules, relative to those quantities measured
for IPSS alone. The data for the Logistics domain
uses the make-span from problems solved by
HAMLET instead, as IPSS found plans with one or
two actions that skewed the resulting percentage.
The data shows that the transferred knowledge
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Source Task Target 
Task 

Domain HAMLET GEBL  

 R TR G R TR G G 

Logistics 16 400 1–3 406 200 2 1–5 

Driverlog 9 150 2–4 71 23 2 2–6 

Zenotravel 8 200 1–2 14 200 1–2 2–13 

Miconic  5 10 1–2 13 3 1 3–30 

Rovers  – 90 1–3 59 7 2 2–13 

Robocare 5 21 1–4 36 4 2–3 5–58 

Gripper  3 40 2–5 15 10 2–5 4–37 

Table 1. Number of Generated Rules, Number of Source Problems, and
Complexity (Range of Number of Goals) of Source and Target Problems.

Domain TGP IPSS 

HAMLET Heuristics GEBL Heuristics

Logistics 97% 12% 25% 62% 

Driverlog 100% 26% 4% 78% 

Zenotravel 21% 38% 40% 84% 

Miconic 20% 4% 100% 99% 

Rovers 72% 37% – 40% 

Robocare 95% 99% 44% 57% 

Gripper 10% 100% 100% 100% 

Table 2. Percentage of Solved Random 
Problems With and Without Heuristics.



always decreased the number of nodes. In addi-
tion, it decreased the make-span in every domain
except Zenotravel and Gripper, where it remained
equal. These results demonstrate that we were able
to transfer the search bias of TGP, which obtains
optimal parallel plans, to IPSS, which does not
explicitly use that bias in its search.

Related Work
As far as we know, our approach is the first one that
is able to transfer learned knowledge between two
planning techniques. However, some recent work
in planning success fully utilizes certain types of
knowledge acquired from prior experience to
improve performance within the same planner. For
instance, Marvin (Coles and Smith 2007) and
Macro-FF (Botea et al. 2005) learn macrooperators,
while the systems reported in de la Rosa et al. (de
la Rosa, Jiménez, and Borrajo 2008) and Yoon et al.
(Yoon, Fern, and Givan 2008) learn control knowl-
edge for forward search planning. Other work has
seeded a planner with control knowledge acquired
by a separate learner. This is the case, for instance,
of EVOCK (Aler, Borrajo, and Isasi 2002) that used
Genetic Programming to evolve the rules learned
by HAMLET, overcoming the search bias of HAM-
LET deductive and inductive components. Also,
Fernández, Aler, and Borrajo (2004) presented ways
of obtaining prior control knowledge from a
human, another planner, and a different machine-
learning technique. This work applied previous
experience to improve the performance of the con-
trol rule learner, as opposed to the performance of
the planner, as in the current article. However,

none of these systems described transferred struc-
tured knowledge between problem solvers.

Our approach is related to work on transfer in
reinforcement learning (RL) settings. Taylor and
Stone (2009) describe methods for communicating
control knowledge between source and target tasks
in several forms, for example, as preference rules,
state-action mappings, or value functions,
although the work is typically conducted in con-
texts where the source and target problem solvers
both employ RL. These methods could be extend-
ed to communicate preference rules obtained from
other learners, through mechanisms of the kind
we have explored in this article. Besides, RL and
planning are also related under the viewpoint of
problem solving as a means of selecting the next
action to apply given the current state. In RL prob-
lems, agents learn policies that map states to
actions with the goal of maximizing the reward
over time (Sutton and Barto 1998). The main dif-
ference between planning and RL is that in RL
goals are usually implicit (given by the reward
function), while in planning those goals are explic-
itly given in the problem formulation. Learning
control knowledge in planning aims to define
these states to actions mappings.

Learning control knowledge in planning can be
divided in two groups: those that learn a complete
policy, and those that learn a partial policy. In the
first case, once a policy has been learned we could
potentially not use the underlying planner to solve
problems but to directly use the policy (García-
Durán, Fernández, and Borrajo 2008; Yoon, Fern,
and Givan 2007; Khardon 1999; Martín and Geffn-
er 2000). In the second case, the learning systems
attempt to obtain heuristics that guide the planner
search (Yoon, Fern, and Givan 2008; de la Rosa,
Jiménez, and Borrajo 2008). They are incomplete
policies in the sense that they cannot replace com-
pletely the underlying planner. As in our work,
they are usually employed to complement (guide)
the search instead of replacing the search. These
systems could be modeled in terms of our unified
model by defining their metaproblem spaces. We
could then study the viability of transferring
knowledge among them through the learned
heuristics.

It is instructive to frame our work using the
vocabulary employed by Taylor and Stone (2009)
to categorize transfer learning methods. Four of
their dimensions are relevant here: (1) the assumed
differences between source and target tasks, (2) the
method of selecting source tasks, (3) the form of
the mapping between source and target tasks/solu-
tions, and (4) the type of knowledge transferred.
Regarding dimension 1, our source and target tasks
can differ in the initial and goal state; in fact, the
number and semantics of goals can also vary. Work
by Fernández and Veloso (2006) is similar in that
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tasks can differ in both the initial and goal state,
while the goals are unique (that is, it considers one
goal per problem, as in most RL tasks). Regarding
dimension 2, our transfer learning algorithm
acquires heuristics from multiple source tasks and
employs them all for transfer without more explic-
it task selection assumptions. There are several
works in the RL literature that fall into this catego-
ry. Regarding dimension 3, our transfer learning
algorithm employs an intertask mapping between
the metaproblem space of the source tasks and the
metaproblem space of the target tasks, where the
metastates and meta-actions both vary. A human
supplies the mapping like in the RL work reported
by Taylor, Jong, and Stone (2008). Regarding
dimension 4, our object of transfer is the situation
to (meta) action mapping, analogous to the RL
work reported in Sherstov and Stone (2005).

Conclusions
This article presents an approach to transferring
control knowledge (heuristics) learned from one
planner to another planner that employs a differ-
ent planning technique and bias. In the process,
we address several of the most difficult problems in
transfer learning: the source and target tasks are
different, target tasks are more complex than
source tasks, the learning algorithm acquires
knowledge from multiple tasks, we do not explic-
itly preselect source tasks that are similar to the tar-
get tasks within a given domain, and the state and
action spaces differ between the knowledge acqui-
sition and knowledge reuse tasks.

Our work began from the observation that the
search biases of a planner could prevent it from
solving problems that a different planner could.
We hypothesized that transferred knowledge could
compensate for this bias, and developed a method
for communicating heuristics in the form of con-
trol rules between planners. We tested our
approach by applying it to acquire control rules
from experience in the TGP planner, and using it
to improve performance in the IPSS planner.

In more detail, we compared the behavior of
IPSS in a variety of benchmark planning domains
using heuristics learned in TGP and heuristics
learned by HAMLET, an inductive-deductive learn-
ing system based on PRODIGY that shares the
search biases of IPSS. In particular, TGP generates
optimal parallel plans, while IPSS generates
sequential plans. In tasks with many equal
resources, IPSS has a bias towards plans in which
the same resource is heavily used. These solutions
cannot be parallelized, and have high scores rela-
tive to the make-span metric. So, it is reasonable to
expect that the transferred control knowledge,
learned in TGP, can help IPSS minimize the make-
span. The experiments confirm our hypothesis; the

rules learned in TGP cause IPSS to reduce the make-
span of the new solution plans in five of seven
domains, where it remained equal in the other
two. The transferred heuristics also let IPSS increase
the percentage of problems it solved while reduc-
ing memory consumption (measured by the num-
ber of generated nodes). The learned rules wors-
ened the percentage of problems solved in one
domain, although there was no evidence of nega-
tive transfer with respect to memory use or plan
quality (make- span).

At the same time, the nature of the performed
experiments makes it hard to know if the improve-
ment is due to superior learning by GEBL versus
HAMLET, or because of the additional bias that we
have introduced by transferring knowledge across
planners, or even because the learning biases used
to generate the heuristics. GEBL and HAMLET
employ similar knowledge representation lan-
guages and rule-learning techniques (EBL), so it
seems plausible that the improvement is only due
to the extra information that the search bias of
TGP provides to IPSS. We plan to clarify the source
of power in future work.

More broadly, our work applies to the problem
of producing general-purpose planners. While
there is no universal optimal planner (a universal-
ly superior strategy for planning in all planning
problems and domains), it may be possible to col-
lect and employ a wide body of good domain-
dependent heuristics by employing machine-
learning methods to integrate multiple planning
techniques. That is, we propose to learn control
knowledge for each domain from the planning
paradigms that behave well in that domain. This
could lead to the creation of a domain-dependent
control-knowledge repository that could be inte-
grated with domain descriptions and used by any
planner. Toward this end, we intend to show that
our approach can be applied to other combina-
tions of planners and learning systems. More
specifically, we hope to explore learning from SAT
problem-solving episodes (using SATplan [Kautz,
Selman, and Hoffmann 2006]) while applying the
acquired knowledge within a forward-chaining
planner. In principle, this will demonstrate that
knowledge transfer of the form explored in this
article can improve performance of the most com-
petitive current planning engines.
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Notes
1. IPSS selects an action for achieving a goal in two steps:
first, it selects the name of the action and second it selects
values for its parameters (grounding).

2. In our case, negative transfer occurs when the learned
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4.  See www.icaps-conference.org.
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