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B Over the years, competitions have been
important catalysts for progress in artificial
intelligence. We describe one such competition,
the Trading Agent Competition for Supply
Chain Management (TAC SCM). We discuss its
significance in the context of today’s global
market economy as well as Al research, the
ways in which it breaks away from limiting
assumptions made in prior work, and some of
the advances it has engendered over the past six
years. TAC SCM requires autonomous supply
chain entities, modeled as agents, to coordinate
their internal operations while concurrently
trading in multiple dynamic and highly com-
petitive markets. Since its introduction in 2003,
the competition has attracted more than 150
entries and brought together researchers from Al
and beyond in the form of 75 competing teams
from 25 different countries.
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any important developments in artificial intelligence
Mhave been stimulated by organized competitions that
tackle interesting, difficult challenge problems, such as
chess, robot soccer, poker, robot navigation, stock trading, and
others. Economics and artificial intelligence share a strong focus
on rational behavior. Yet the real-time demands of many
domains do not lend themselves to traditional assumptions of
rationality (Simon 1979, Wellman 1996). This is the case in
many trading environments, where self-interested entities need
to operate subject to limited time and information. With the
web mediating an ever broader range of transactions and open-
ing the door for participants to concurrently trade across multi-
ple markets, there is a growing need for technologies that
empower participants to rapidly evaluate very large numbers of
alternatives in the face of constantly changing market condi-
tions. Al and machine-learning techniques, including neural
networks and genetic algorithms, are already routinely used in
support of automated trading scenarios. Yet, the deployment of
these technologies remains limited, and their proprietary nature
precludes the type of open benchmarking that is critical for fur-
ther scientific progress.
The Trading Agent Competition for Supply Chain Manage-
ment (TAC SCM) was conceived by Norman Sadeh in 2002 as a
way of focusing the attention of researchers in Al and beyond
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on the increasingly complex problem of managing
supply chains in today’s global economy. More
specifically, it was designed to foster the develop-
ment of new techniques to manage risk and adapt
to changing conditions while concurrently trading
in multiple markets (Sadeh et al. 2003). The initial
version of the game was designed and implement-
ed through a collaboration between Carnegie Mel-
lon University and the Swedish Institute of Com-
puter Science (Arunachalam and Sadeh 2005;
Eriksson, Finne, and Janson 2006), with subse-
quent refinements introduced through a collabo-
ration with the first author (Collins et al. 2005).
Over the years, all three authors have also con-
tributed successful entries in the competition.

Supply chains are the foundation of today’s
global economy, with annual flows worth tens of
trillions of dollars. As companies continue to focus
on core competencies and outsource functions
ranging from procurement of raw materials and
components to logistics, after-sales support, and
recycling and remanufacturing operations, they
weave increasingly complex networks of interde-
pendent organizations often spanning multiple
continents. Pressure to shorten product life cycles,
reduce costs, and offer higher levels of customiza-
tion is simultaneously forcing organizations to
explore increasingly flexible contractual relation-
ships (for example, price, volume, or service-level
flexibility) aimed at reducing inventory risks while
providing protection against shortages and price
fluctuations. By their very nature, these more flex-
ible relationships place a premium on the ability
of supply chain entities to adapt rapidly to chang-
ing market conditions. Those capable of doing so
reap significant benefits in the form of more effi-
cient operations and higher profit margins. Yet fail-
ures under these less forgiving scenarios can also
be catastrophic, ranging from companies going out
of business because they made the wrong bets to
critical supplies failing to be delivered in time in
the face of disruptive events such as hurricanes,
strikes, or pandemics.

TAC SCM builds on the observation that supply
chains should not be viewed as monolithic entities
that can be centrally optimized but instead consist
of multiple self-interested entities each operating
according to its own objectives and policies
(Swaminathan, Smith, and Sadeh 1998). Whereas
each real-world supply chain exhibits its own
peculiarities, TAC SCM is designed to capture
major sources of complexity common to many
supply chains, while shielding researchers from
less relevant idiosyncrasies. Supply chain entities
are modeled as autonomous agents that concur-
rently compete with one another in both end-
product and component marketplaces subject to
multiple sources of uncertainty. In artificial intelli-
gence terms, these agents must act autonomously
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to maximize their expected utilities in an environ-
ment that is highly dynamic, partially observable,
and strongly affected by the actions of competing
agents.

Starting with the first open competition in 2003,
TAC SCM has attracted more than 150 entries from
75 teams distributed across 25 different countries.
These teams represent a variety of research inter-
ests in areas including artificial intelligence, eco-
nomics, operations research, information systems,
and software engineering. Examples include
machine learning (Pardoe and Stone 2007), empir-
ical game theory (Jordan, Kiekintveld, and Well-
man 2007), economic modeling of markets (Ketter
et al. 2009), economic decision making (He et al.
2006, Kiekintveld et al. 2006, Ketter et al. 2009),
dynamic pricing and prediction (Benisch,
Andrews, and Sadeh 2006; Keller, Duguay, and Pre-
cup 2004; Ketter et al. 2007; Kiekintveld et al.
2009; Pardoe and Stone 2009), scheduling
(Benisch et al. 2004), agent architectures (Collins,
Ketter, and Gini 2009; Benisch et al. 2009), and
supply chain management (Sardinha et al. 2009).

In the following sections we present the TAC
SCM game scenario and review the decisions com-
peting supply chain trading agents have to make
in the game. Along the way, we discuss some of the
challenges associated with the design of the game
and of successful agents. We highlight the game’s
relationship to current and future supply chain
practices. We also review how TAC SCM has been
used in education and what is required for new
teams to enter the competition, including the
availability of software that can help to develop
and fine-tune agents.

The TAC SCM Scenario

The TAC SCM game scenario captures key features
of a multiple-tier supply chain with multiple actors
competing in each tier. The game models 220 days
(or 44 five-day weeks, which we informally refer to
as a year) of operation in 55 minutes of real time.
Participating agents must operate through three
conceptual phases that are characteristic of the
launch, steady production, and eventual phasing
out of multiple end products. The end products are
assumed to be different types of PCs, though the
simulation model is in no way restricted to this
particular type of product.

Each PC model requires a different combination
of components. To promote lean supply chain
management practices, TAC SCM assumes that PC
models are phased out by the end of the one-year
period, and their residual value and that of the
major components they require is effectively zero.
In other words, the scenario penalizes agents that
hoard more components than they need or assem-
ble more PCs than they are able to sell. Teams com-
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Figure 1. Schematic View of TAC SCM Simulation Scenario.

Agents assemble and sell 16 different products, using 10 component types purchased from suppliers.

pete by entering their supply chain trading agents
in the competition and playing a large number of
games against different combinations of competi-
tors. Each trading agent is responsible for procur-
ing components from multiple suppliers, manu-
facturing finished products (different types of PCs),
and selling those products to customers. All the
while it competes with other trading agents
entered by other teams, who are also trying to pur-
chase the same components and sell the same
products, as component and end-product market
conditions change (for example, because of the
actions of other trading agents or because of exoge-
nous conditions such as suppliers losing some
capacity or demand for some particular types of
PCs dropping over time). By requiring agents to
compete in hundreds of games, the competition is
able to evaluate agent performance across a variety
of market conditions and competitive settings—
from markets with low product demand and high
component availability, to markets with high
product demand and low component availability,
to anything in between including markets that
transition between these extremes for different end
products and components.

The schematic overview of the TAC SCM sce-
nario shown in figure 1 will help explain the
specifics of the game. Several agents (for example,
MinneTAC, TacTex, Botticelli) compete with each
other as manufacturers of personal computers, pur-

chasing computer components (central processing
unit [CPU], motherboard, hard drive, and memo-
ry) from suppliers (IMD, Pintel, and so on) in a pro-
curement market, and selling their finished prod-
ucts to customers in a sales market. Each agent has
identical production and warehouse facilities, each
sees the same customer demand, and each initial-
ly has equal access to suppliers, although reputa-
tion effects can result in preferential treatment as
the game progresses. Customer demand and sup-
plier capacity and prices are highly variable both
within the course of a game and across different
games. Each agent starts with no inventory and an
empty bank account and must borrow (and pay
interest) to build up an inventory of computer
components before it can begin assembling and
shipping computers. The agent with the largest
bank account at the end of the game is the winner
of that particular game; performance of agents is
averaged across many games in the competition
setting. Actions of other agents are visible only
through their effects on the customer and supplier
markets.

Figure 2 shows a typical sequence of interactions
between a TAC SCM agent and its environment
over the course of a simulated day. Each day lasts
15 seconds, which limits the reasoning time avail-
able to agents. In the real world, supply chains
require the management of many more compo-
nents with many events accruing during the
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Figure 2. Timeline of an Agent’s Interactions with Its Environment.

course of the day; a 15 second day in the TAC SCM
game is therefore not unrealistic. At the beginning
of each cycle, each agent receives a bundle of mes-
sages from the server, representing customer
demand, customer orders arising from bids placed
during the previous cycle, status updates from the
bank and warehouse, and supplier offers arising

66 Al MAGAZINE

from supplier requests for quotation (RFQs) issued
during the previous cycle. Before the end of the
cycle, the agent must decide how to bid on new
customer RFQs, which supplier offers to accept,
what parts to request from suppliers, what finished
goods to ship to customers, and how to allocate its
limited factory and inventory resources to produc-



tion of new finished products. The actual delivery
of components from suppliers to the agent’s ware-
house and the delivery of finished products from
the agent’s warehouse to customers, along with
associated payments from and to the agent’s bank
account, are handled by the server.

From an AI perspective, the TAC SCM game
requires agents to concurrently compete in multi-
ple markets (the procurement and sales markets)
subject to numerous sources of uncertainty, while
simultaneously managing their internal produc-
tion and logistics operations. The markets also
exhibit some level of interdependence. For
instance, different end products require different
but overlapping combinations of components, and
hence demand for different components will have
some correlation over time. The agents also have
to operate with incomplete information. For
instance, agents do not know how market condi-
tions will evolve, and they do not see the private
data of other agents such as their inventory posi-
tions, their order books, the prices at which they
procure components from suppliers, the compo-
nent purchases they have made, the price at which
they are selling different PC models on a given day,
and so on. Yet, each day as they place requests for
components and offer end products for sale, they
receive feedback from the environment. This feed-
back comes in multiple forms, including whether
they manage to sell different types of PCs and at
what price, how many components they manage
to procure from different suppliers, at what price
and lead time. Agents can leverage this feedback to
update probabilistic models of the markets and of
what other agents are doing. These models in turn
can help them dynamically adapt their strategies.
Strategies can include adjusting product mix,
stocking up on components that are expected to be
in low supply, and increasing the price of products
that seem to be in high demand or for which there
seems to be little competition.

The following three subsections further detail
elements of the game’s procurement market, pro-
duction and logistics, and the sales market. These
subsections are intended to convey the level of
sophistication involved in the design of the TAC
SCM agents. Some readers may just want to jump
to the agent decision problems section of this
article.

Procurement Market

The procurement market consists of eight suppli-
ers, each of which carries two product lines. Each
supplier operates according to a lean, make-to-
order policy. In other words, production is driven
by actual demand rather than demand forecast.
The capacity of each supplier production line
varies from day to day according to a mean-revert-

ing random walk that captures effects such as loss
of capacity (for example, due to maintenance) and
exogenous demand (for example, components
used in products not modeled in this supply
chain). Agents may request price quotes from sup-
pliers, specifying a particular component, quantity,
delivery date, and reserve price. Suppliers respond
with quotes that reflect how busy they are, with
higher quotes being returned when they are run-
ning near capacity and lower quotes when they
have lower order books. Supplier commitments are
based on estimates of their future capacity and, as
such, are not entirely reliable. As a result, capacity
variations can lead to shipment delays.

To build a finished product, an agent needs one
each of four different component types: a CPU, a
motherboard, a disk drive, and a memory card.
There are two CPU suppliers, Pintel and IMD. Their
processors are not interchangeable; Pintel CPUs
must be assembled with Pintel motherboards, and
IMD CPUs must be assembled with IMD mother-
boards. Both Pintel and IMD make “fast” and
“slow” CPUs. Disk drives and memory cards each
come in two different sizes. The result is that the
CPUs are single sourced, while all other compo-
nent types are dual sourced. The lack of substi-
tutability between CPU sources means that the
CPU market is more volatile and unpredictable
than the markets for other component types.

Individual suppliers are approximately revenue
maximizing entities, and they manage risk in two
ways. First, they will not commit their entire
capacity at any one time; instead, they reserve a
portion (approximately half) of future capacity for
future business. Second, they keep track of whether
agents follow through with orders when offers are
made. The result is that agents must manage their
individual reputations with respect to each suppli-
er by keeping their ratio of orders to offers above a
threshold. Failure to do so results in higher prices
and lower availability of parts in comparison with
competing agents.

The procurement market generally yields lower
prices for longer lead times, but at times of over-
supply, prices can be lower for very short-term
requests. Order lead times can extend to the end of
the game, which is 220 days at the beginning of a
game. The longest customer lead time is 12 days,
and supplier prices tend to peak in the range of 8-
15 days lead time. Supplier orders require a 10 per-
cent down payment, and so the cost of funds can
be a factor for long lead time orders.

Production and Logistics

Once an agent has acquired the necessary parts to
assemble computers, it must schedule production
in its finite capacity factory. Each computer model
requires a set of parts and a specified number of
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Figure 3. Supply and Demand in the Sales Market.

assembly cycles. Assembled computers are added
to the agent’s finished goods inventory and may be
shipped to customers to satisfy outstanding orders.

Warehouse capacity for both components and
finished products must be purchased at a price that
is a function of the value of the stored materials.
This effectively places a premium on keeping
inventories under control. In addition, each indi-
vidual component type is used in multiple types of
finished goods, across multiple market segments.
The result is that there is potentially some oppor-
tunity cost to converting parts to finished goods
without having sales commitments for the fin-
ished goods. Further incentive to keep inventory
under control arises from the fact that at the end of
the simulation unsold inventory has no residual
value.

Sales Market

The sales market uses a reverse, first price, sealed
bid auction mechanism. Each day, customers issue
RFQs for the products they wish to buy. Each RFQ
specifies a computer model, quantity, delivery
date, and a maximum or reserve price, as well as a
daily penalty amount that the agent must pay if it
fails to meet its sales commitments. Penalties can
make failure to ship on time quite expensive, and
customer orders are canceled if they are more than
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five days late, which also eliminates income from
the sale.

The sales market trades in 16 product types, seg-
mented into high-end, medium, and low-end prod-
ucts. Customer demand varies from day to day
independently in each segment, controlled by a
trend that changes daily through a bounded ran-
dom walk. Figure 3 shows a qualitative view of the
supply and demand behavior of one segment of the
customer market. The shape of the demand curve is
controlled by the current overall demand and by
the uniform distribution of reserve prices between
0.75-1.25 of the nominal cost of components. The
shape of the supply curve is limited at the high
quantity end by the inventory status and aggregate
production capacities of the competing agents, and
at the low price end by the minimum cost of com-
ponents. The detailed shape of the supply curve is
a function of the combined bidding strategies of
the competing agents. It is not directly observable
within a game, but segments of it can be deduced
through postgame examination of data.

The Game Design Challenge

Designing an economic game that serves a research
agenda and provides an interesting and reasonably
accessible challenge to researchers is a difficult
undertaking. The original goals for TAC SCM,



described by Arunachalam and Sadeh (2005),
included realism and generality, uncertainty and
incomplete information, strategic interactions,
and simplicity. The scenario must have enough
realism to be relevant to practitioners, enough gen-
erality to be representative of a broad range of sup-
ply chain situations, and enough subtlety to
require new ideas, without unnecessary complexi-
ty that would make agent design and data analysis
more difficult than it needs to be. Supply chain
management must deal with uncertainty, risk, and
limited information. An interesting simulation sce-
nario should include significant variability in
prices, availability, and demand and should limit
visibility of markets and competitors to approxi-
mate the view of a real-world supply chain man-
ager. The scenario should reward careful manage-
ment of risk. The game and its market mechanisms
must allow and encourage strategic behavior and
yet be free of unintended exploitable weaknesses.
In addition, in order to attract enough interest to
provide good competition, game designers must
provide the simulation infrastructure and a basic
agent framework that encapsulates the interac-
tions between the infrastructure and the agent.
Serviceable visualization and analysis tools are
needed in order to demonstrate the concepts of the
game and to support researchers as they develop
and analyze their agents.

The initial design of the TAC SCM scenario suf-
fered from two basic problems. First, there were
multiple opportunities for agents to manipulate
the game in unintended ways (Ketter et al. 2004,
Wellman et al. 2005). Second, the balance between
supply and demand was such that a relatively sim-
ple agent that worked to keep its factory busy
could be fairly successful. Once these issues were
understood clearly, the first author led an effort
after the second annual competition to revise the
scenario, making the competition more interesting
and challenging as it was originally intended.
Empirical evidence based on the many games
played over the years by agents developed by 75
different teams suggests that opportunities for
strategic manipulation that have the potential to
subvert the purpose of the game have been elimi-
nated. Agents must manage their reputations with
respect to each supplier; this discourages agents
from creating false demand by making large
requests and then turning down the resulting
offers, thereby inflating prices. Because suppliers
reserve some capacity for future demand, it is very
difficult to corner the market for some component
type. It is still possible and indeed common for
agents to manipulate prices in both the sales and
procurement markets. For example, knowing that
agents can see only the highest and lowest order
prices in the sales market, agents can make isolat-
ed offers well below current prices, thereby seeding

opponent price models with misleading informa-
tion. This technique can be used to drive prices
down with minimal impact on profits, in situa-
tions where prices are above the knee in the cus-
tomer demand curve, or when an agent believes it
has a lower procurement cost basis for a specific
product than its competitors.

The parameters of the scenario are set to ensure
that decision coordination between procurement
and sales is reasonably challenging. Figure 4 is a
histogram of the daily customer RFQ count over
200 games, approximately 44,000 observations,
which shows the overall balance between supply
and demand. Superimposed on the histogram are
the mean customer demand, the aggregate capaci-
ty of six agent factories, and the expected supplier
capacity. The key message from this balance is that
an agent can expect to buy enough parts to keep its
factory busy, but a strategy that simply tries to keep
the factory busy is likely to result in a large unsold
inventory at the end of an average game because
the expected customer demand cannot absorb the
production of a set of agents that behave in this
way. (This balance was first introduced in the 2005
competition. Destructive price wars were a com-
mon problem in the early rounds of that competi-
tion until the full-production agents were elimi-
nated.) On the other hand, there are some games
in which the agents cannot supply all the demand,
and the variability inherent in the simulation can
lead to serious imbalances between customer
demand for specific products and the availability
of the parts required to build them. The best agents
are able to adapt their behaviors to exploit these
imbalances.

The game platform consists of a server that sim-
ulates not only the suppliers and customers but
also the agent factories and warehouses, along
with a bank. Agents join a simulation through
standard Internet connections. This allows
research teams to work with their own tools and
hardware and greatly simplifies the operation of
open competitions. Since many agents are essen-
tially compute bound, this structure arguably gives
some advantage to teams who have more or better
hardware at their disposal. So far, there is little evi-
dence that this is a factor; agent design appears to
be a significantly greater predictor of performance
than hardware capability.

Agent Decision Problems

To be competitive, an agent must purchase com-
ponents and manufacture products it can sell, and,
to the extent possible, it must sell what it has built
at a profit. After seven years of competition and
publication, the competition in the final stages of
the annual tournament is quite intense. Profit mar-
gins are very slim, and prices in the customer mar-
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ket are seldom very far above the component costs
seen by the agent with the most effective procure-
ment strategy. Prices in both the customer and sup-
plier markets can be quite volatile as agents con-
tinually adjust their behaviors to take advantage of
the markets and of any weaknesses in their oppo-
nents. Kiekintveld et al. (2006) identify three key
issues that a successful TAC SCM agent must
address: dealing with substantial uncertainty in a
highly dynamic economic environment, in com-
petition with other self-interested agents whose
behavior is naturally strategic.

A successful agent design for TAC SCM must
make a variety of decisions every 15 seconds.
Attempts to construct and maintain opponent
models must account for the fact that the sales and
procurement markets are oligopoly markets, which
means that one must model and anticipate the
effects of one’s own actions. For example, any
attempt by an agent to increase its market share for
a highly profitable product will typically depress
prices and hence the profitability of that product.
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It also means that daily variations in the behavior
of a competitor can introduce significant noise
into the price signals that are observed by an agent.

In the remainder of this section we describe the
basic decision problems a successful TAC SCM
agent must address, and review some of the suc-
cessful approaches that have been developed as a
result of the ongoing competition.

Procurement

Agents seek to purchase raw materials (computer
components) at a price that will allow finished
goods to be sold at a profit. But purchasing low-
cost components is not enough. There is a limit to
the rate at which the agent’s factory can absorb
components, and components that cannot be
assembled into usable products are worse than use-
less—they represent sunk cost that may not be
recoverable, and the agent must pay to store them.

Most agents use some sort of projected invento-



ry model to determine their procurement needs,
along with a supplier pricing model. For example,
Kiekintveld et al. (2004) describe an inventory
model that projects future inventories by adding
supplier shipping commitments and subtracting
existing and expected future consumption. When-
ever a future shortage is discovered, the agent
forms a goal of replenishing its inventory to cover
the shortage. If the expected shortage is more than
a few days in the future, the agent must decide
whether to place an order immediately or wait
until some later date and place an order with a
shorter lead time. This decision is driven by a sup-
plier pricing model that observes supplier price
quotes to build up a history of prices at various
lead times; the agent then uses this model to esti-
mate bounds on each supplier’s uncommitted
capacity, and it uses these capacity estimates to
predict current and future prices. Such models are
possible because supplier pricing is a deterministic
function of uncommitted capacity, but they are
necessarily probabilistic, because the price signals
observable by an agent are sparse and noisy.

Benisch et al. (2009) describe a procurement
process that spreads its requests to each supplier
over time in a way that attempts to minimize over-
all cost. The difference between target and predict-
ed inventory is projected out to the end of the
game, and each projected shortfall initiates a
process that distributes purchasing across available
suppliers and across time, attempting to exploit
minima in the prices predicted by its supplier price
model.

Procurement is arguably the most difficult deci-
sion problem in the TAC SCM scenario. Possibly
because of this difficulty, there is strong evidence
from work by Andrews et al. (2008) that procure-
ment performance is the best predictor of overall
agent performance.

Production Scheduling

In the early competitions, some agents experi-
mented with various methods for building near-
optimal production schedules. For example,
Benisch et al. (2004) describe a stochastic pro-
gramming formulation for production scheduling.
The goal was to maximize the probability that
products produced would actually be sold. At any
given time, an agent has a set of outstanding cus-
tomer orders, with due dates spread out over up to
11 days in the future. It also has a set of customer
RFQs on which it can place bids, and it has some
expectation of future demand. In the approach
described by Benisch et al., bids are placed before
the production schedule is generated. The produc-
tion schedule attempts to satisfy all outstanding
commitments first, ordered by due date, then as
many outstanding sales offers as possible, ordered

by expected profitability and due date. The sched-
ule is projected into the future by several days, and
the availability of uncommitted capacity is used to
control sales volume targets.

Most agents simply keep track of uncommitted
production capacity and use it to constrain sales
quotas, and they schedule production using a
straightforward greedy method. Evidence from
Andrews et al. (2008) suggests that production
scheduling performance is not a strong differenti-
ating factor among existing agents.

Sales

During each simulation cycle, each agent sees the
tull customer demand in the form of a bundle of
RFQs. It must decide which requests to bid on and
what the bid prices should be. The agent must con-
sider many factors in making this decision, includ-
ing its own current and expected inventory situa-
tion, expected cost of inventory replenishment,
existing sales commitments, available factory
capacity, and its own models of future demand and
market prices. A number of approaches have been
tried for controlling this decision, ranging from
fuzzy logic to linear programming. All of them
must somehow solve a constrained optimization
problem with some degree of approximation, in
limited time.

The MinneTAC agent (Ketter et al. 2007) con-
trols its bidding in the customer market on three
principles. First, market prices are tracked and pro-
jected using a model that is trained with a large
body of historical game data and fine-tuned using
in-game market monitoring. A Gaussian mixture
model classifies market situations or “economic
regimes” (Ketter et al. 2009). Projection of future
price trends uses a recursive Markov model. Given
sales and procurement price predictions over a
planning horizon, a linear program sets daily sales
quotas for each product over the horizon, subject
to constraints arising from inventory, factory
capacity, and (projected) customer demand.

The SouthamptonSCM agent (He et al. 2006)
uses fuzzy reasoning to decide which customer
requests to respond to and what the bid prices
should be. Its overall goal is to maximize its facto-
ry utilization, as long as it can do so profitably.
Demand and inventory are represented as fuzzy
sets, and a set of rules convert those into control
variables, which are combined into a “price adjust-
ment factor” that is applied to the prices observed
in the market on the previous day. Southampton-
SCM uses a separate fuzzy rule base to control pric-
ing near the end of a game, where the criterion for
profitability requires moving as much of its
remaining inventory as possible.

Benisch, Andrews, and Sadeh (2006) describe a
very different approach to pricing in the sales mar-
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ket. Their CMieux agent treats sales pricing as a
continuous knapsack problem. The goal is to offer
a price to every potential customer (at least those
for which a profitable sale is possible) that maxi-
mizes total revenue while avoiding overcommit-
ment of its inventory and production capacity in
expectation. They show that the optimum price
sets the demand fraction for the different products
such that the first derivative of a “reward function”
is equal across all products.

The small number of players in the TAC SCM
markets has been a tempting target for opponent
modeling techniques, but the specific actions of
individual opponents are not visible during the
simulation—only their aggregate effects on the
markets can be observed. However, the simulation
server keeps a detailed log of agent interactions,
and this data is available after the completion of
each tournament round. Pardoe and Stone (2009)
have experimented with a variety of opponent
modeling schemes, using these detailed simulation
records. They were able to show that there is some
advantage to learning from a body of training data
containing exactly the mix of opponents that one
is competing against, but it is not a large effect.

One way in which progress is evident over the
years of the competition is through the distribution
of sales prices. We see this in two different ways.
First, agents have become more consistently prof-
itable, although they do not always earn back their
initial investment. This means, for example, that
price wars have been rare in the more recent tour-
naments. Second, the daily sales price ranges for
given products averaged around 3 percent in the
2008 tournament and 1.5 percent in the 2009 tour-
nament. In contrast, the width of the daily price
distributions during the first two years of competi-
tion averaged over 7 percent and frequently went
well over 10 percent in tournament games.

Decision Coordination

The TAC SCM scenario places a premium on effec-
tive coordination of decisions affecting multiple
markets and internal resources. Inventory plan-
ning is complicated by the fact that a given part
may be used in multiple products, and a shortage
of a particular part can prevent an agent from par-
ticipating in significant segments of the customer
market. Because demand in the three customer
market segments can vary independently over a
wide range, a strategy that strongly decouples pro-
curement from sales is unlikely to meet customer
demand effectively without carrying excess inven-
tories of the parts that are not currently in
demand. In the first years of the competition,
before the customer market was segmented, this
decoupling was a very common strategy. Ketter,
Collins, and Gini (2010) identify the problem of
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decision coordination as a crucial element in the
design of an agent for TAC SCM and review the
published literature on agent design to discover a
wide variety of approaches to this problem. The
authors believe that the existence of such variety is
an indication that much is yet to be learned about
designing such agents.

The CMieux agent (Benisch et al. 2009) from
Carnegie Mellon is an example of an agent that
clearly separates decision coordination from
details of procurement, sales, and production
scheduling. A schematic diagram of the CMieux
design is shown in figure 5. The strategy module
sets overall goals for the remainder of the system,
such as the portion of expected demand to target
and the portion of the production schedule (ATP,
or available to promise quantities for each end
product) that should be sold to customers (DTP, or
desired to promise quantities for each end prod-
uct). The forecast module observes the markets and
makes predictions about demand, prices, and
delays in supplier shipments. The inventory pro-
jector combines that with current inventories and
expected supplier deliveries to generate inventory
projections over time. Procurement uses the pro-
jected inventory, along with an optimistic version
of the production schedule (what Production
would expect to build if there were no inventory
constraints), to decide what to order from suppli-
ers and supplies the inventory projector with actu-
al supplier orders. CMieux reached the finals in
2007, 2008, and 2009.

The DeepMaize agent (Kiekintveld et al. 2006)
from the University of Michigan coordinates its
decisions through “value-based decomposition.”
In this approach, a long-term production schedule
is constructed by incrementally adding the prod-
ucts that are expected to return the highest mar-
ginal profits at multiple points in the future. The
general scheme is summarized in figure 6. For both
the customer and supplier markets, this approach
depends on reasonably accurate pricing models
that effectively capture price-quantity trade-offs.
The two prediction components shown in the dia-
gram, along with an offline machine-learning
process, are responsible for producing those mod-
els. Given the resulting long-term production
schedule, the Procurement module attempts to
provide the necessary components to fill it, and
Sales uses it to set prices in the customer market.
DeepMaize has been a finalist in all of the TAC
SCM tournaments. It placed third in 2006 and
2007, and first in 2008 and 2009.

Real World Agent-Enabled SCM

Since the mid-1990s, artificial intelligence tech-
niques have contributed to the development of
new supply chain decision support techniques,
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starting with the work of Swaminathan and col-
leagues on agent-based supply chain modeling and
simulation, which was applied in the context of
business process reengineering efforts at major
electronics and grocery firms (Swaminathan,
Smith, and Sadeh 1998). Around the same time,
Sadeh and colleagues also reported on the initial
deployment and evaluation of Al-based decision
support tools for supply chain coordination at
Raytheon (Sadeh et al. 1998). This work led to the
development of the MASCOT multiagent architec-
ture for coordinated decision support within and
across multiple supply chain entities (Sadeh,
Hildum, and Kjenstad 2003) and demonstrated
how agent-assisted lateral coordination of manu-
facturing operations across organizations can
increase both profitability and customer respon-
siveness in the face of high load factors and a vari-
ety of contingencies. A third line of work strongly
influenced by research in artificial intelligence has
seen the development and fielding of technologies
for reverse supply chain auctions. This includes
work by Wurman, Wellman, and Walsh (1998) on

configurable auction technology eventually com-
mercialized by Ariba. It also includes work on more
expressive mechanisms for reverse auctions con-
ducted by Sandholm et al. (2005) and commercial-
ized by CombineNet, a company that conducts
large-scale procurement auctions where buyers and
sellers can express a wide range of constraints and
preferences beyond price.

Among other objectives, TAC SCM was designed
to promote the development and benchmarking of
adaptive supply chain trading technologies
required to better manage risk in supply chain
environments characterized by increasingly flexi-
ble contractual relationships, such as those result-
ing from reverse auctions organized by companies
like CombineNet. These long-term contractual
relationships are typically characterized by flexi-
bility in price, quantities, and service levels and
often entail arrangements where supply chain
entities need to dynamically manage complex
portfolios of flexible supply chain contracts (Mar-
tinez de Albeniz and Simchi-Levi 2005). This work
itself was strongly influenced by studies conducted
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in the mid to late 1990s, showing that, contrary to
popular belief, many manufacturers did not rely
solely on long-term strategic partnerships with
suppliers and that more research was needed on
how to effectively manage portfolios of buyer-sup-
plier relationships covering a wide spectrum of
possible arrangements (for example, study of
Japanese car manufacturers by Bensaou [1999]). A
review of models for constructing short-term and
long-term contracts in business-to-business mar-
kets has been conducted by Kleindorfer and Wu
(2003). Elmaghraby (2000) also provides an excel-
lent review of trade-offs between different sourcing
strategies. Martinez de Albeniz and Simchi-Levi
(2005) have shown that portfolios of quantity-flex-
ible procurement contracts used in combination
with spot market procurement can contribute to
higher expected profits and lower financial risk.
Nagali et al. (2008) have reported using a similar
risk management model to support the develop-
ment of portfolios of procurement contracts,
achieving savings of hundreds of millions of dol-
lars in the procurement of flash memory used in
printers assembled by Hewlett-Packard. In 2007,
Norman Sadeh and his colleagues launched the
“Procurement Challenge,” a variation of the sup-
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ply chain trading competition focusing solely on
the management of long-term, quantity-flexible
procurement contracts and one-off procurement
contracts (Sardinha et al. 2009).

Teaching

Beyond its research impact, the TAC SCM scenario
has also contributed to classroom education
around the world (United States, Canada, the
Netherlands, Brazil, United Kingdom, Australia, for
example), both at the undergraduate and graduate
levels. Typically, students are required either to
develop new entries from scratch or to develop and
evaluate alternative designs for modules of a given
trading agent. In the process, they gain hands-on
experience with online learning and stochastic
optimization techniques. They also learn better to
appreciate the complexity associated with compet-
itive environments, where the success of an agent’s
strategy depends on the strategies of others and
how quickly one can adapt to changes in these
strategies. Having students work on TAC SCM
agents or modules has also proven to be an excel-
lent way to expose students to software engineer-
ing concepts, especially when they work in teams,



with different members each in charge of develop-
ing and evaluating modules or functionality whose
performance is often dependent on modules or
functionality developed by other team members.
This type of work fits naturally in a computer sci-
ence curriculum but is less appropriate for man-
agement science and economics students.

As a result, games such as the MIT beer
game (Sterman 1989, 1992) are still the prevalent
teaching tools in business and management pro-
grams, despite their simplistic setup. TAC SCM has
the potential to replace these games and expose
students (and managers) to much more dynamic
and complex supply chain scenarios. Getting
there, however, will require building an additional
layer of mixed-initiative functionality, where
human decision makers (students or managers)
have the ability to tweak high-level, human-ori-
ented parameters while relying on underlying
agent-based decision support to process the very
large number of options and decisions necessary to
implement resulting strategies. Initial work on a
mixed-initiative version of TAC SCM and the Min-
neTAC trading agent is currently under way (Nel-
son et al. 2009).

Getting Involved

A working trading agent is a complex piece of soft-
ware. TAC SCM agents must not only make coor-
dinated decisions; they must also interact correct-
ly with the game server, and typically they must
produce data needed for empirical research. The
organizers of the competition have worked to keep
the game interesting and to minimize the barrier
to entry by providing the game server along with a
software infrastructure that handles the agent-to-
server interface and does the basic data manage-
ment tasks. A simple dummy agent is included
with this infrastructure, forming a foundation for
more sophisticated agents. Teams whose agents do
well in competition are strongly encouraged to
make their agents available to the community.! As
a result, many teams have provided both binary
and source for working agents that are significant-
ly more competitive than the dummy agent. The
availability of top-performing agents enables nov-
el types of research, such as the empirical game
theory work of Jordan, Vorobeychik, and Wellman
(2008).

Research requires data, and both research and
agent development depend on basic analysis tools.
The game infrastructure includes a tool for parsing
the logs produced by the game server. This tool
provides a basic user interface that shows day-by-
day activity in the procurement and sales markets,
along with bids, offers, orders, inventory levels,
factory utilization, bank account balances, and
other data. For example, figure 7 shows the pro-

duction and inventory display. The log analysis
tool is programmable with simple Scheme scripts
to enable data extraction and is distributed with
sample code that dumps game data into a database
for further analysis.

Figure 8 shows an example of a set of market-ori-
ented analysis tools built by students at Carnegie
Mellon University on top of the basic logfile pars-
er. This tool is useful for understanding market
interactions among agents, such as market share
and bidding behavior.

The MinneTAC agent (Collins, Ketter, and Gini
2008, 2009), shown schematically in figure 9, is a
complete, easily configured agent available in
source form from the University of Minnesota.?
Building a working agent on the MinneTAC foun-
dation is much less work than building a competi-
tive agent on the lower-level framework that is dis-
tributed with the TAC SCM server.

As we can see from figure 9, MinneTAC uses a
very different design approach from the other
agents we have examined. The Repository main-
tains the current state of the agent, and the various
components interact only through the Repository.
The Oracle component is a wrapper for many small
modules called Evaluators that can be strung
together in a directed graph, as specified in a con-
figuration file, to do the necessary analysis and pre-
diction tasks requested by the decision compo-
nents. Coordination among decision components
happens because they share some of those Evalua-
tors. For example, both the Sales Manager and the
Supplier Manager use sales quotas produced by one
of the Evaluators.

Ultimately, the process of generating and ana-
lyzing data from TAC SCM simulations requires
that many games be run. The simulation environ-
ment is designed to separate the server from the
agents over network connections, and many
agents are nearly compute bound while they make
their daily decisions. This means that running
games requires either a large cluster configuration
or coordination of processes across multiple
machines in a network environment. In addition,
the high variability of the game scenario coupled
with random behavior on the part of some agents
may require analyzing large numbers of games to
reach statistically interesting conclusions. For
example, the game theory analysis described by
Jordan, Kiekintveld, and Wellman (2007) required
more than 12,000 games. The process of manually
setting up and running such experiments is daunt-
ing even for the most dedicated graduate student.
To address this problem, Collins, Ketter, and Paka-
nati (2009) describe a framework for managing
multigame experiments through a simple web-
based user interface.

A primary factor that makes the TAC SCM sce-
nario interesting and challenging is the high vari-
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ability of market conditions within and across
games. This variability drives up the number of
simulations required to achieve statistical signifi-
cance when comparing agents or agent configura-
tions. Because the game server generates its ran-
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dom behavior using pseudo-random sequences, it
is possible to rerun games with repeated sequences
when evaluating alternate agent configurations, as
described by Sodomka, Collins, and Gini (2007).
The result is a dramatic reduction in the number of
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Figure 8. Game Analysis Tools Made Available to Competitors by Carnegie Mellon University.

games needed in an experiment design. The game
server distributed through tac.cs.umn.edu supports
this level of control.

Conclusion and Future Work

Organized competitions such as TAC SCM have
been effective tools for driving Al research into a
range of interesting, complex domains that are
both socially and economically important and dif-
ficult for a single research team to address. The rap-
id rise of Internet-enabled business interactions
makes the supply chain management domain, like
many real-world problem areas, increasingly chal-
lenging for human decision making. At the same
time, the complexity of such interactions is
beyond the analytic scope of formal game theory.
The result is that evaluation of new approaches to
decision making is very difficult in isolation. The
multiyear competition format, with active partici-

pation of motivated teams of researchers and regu-
lar publication of new techniques and results,
makes such evaluation possible. At the same time,
the need to work with management science and
economics practitioners expands the scope of con-
tributions from Al research and stimulates the Al
community with new and interesting challenges.
Agents that operate effectively in the TAC SCM
environment must be able to sense and model
their environment and predict their own impacts
on that environment. They must be able to deal
with substantial uncertainty and limited visibility
of the important features of their environment.
They must maximize their utilities in expectation,
while carefully managing risk. They must make a
number of coordinated decisions within strict time
constraints. Agents may engage in strategic inter-
actions with their competitors, through manipula-
tion of the shared environment. After seven years
of competition, there is no clearly dominant
approach to agent design and decision processes.
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Details depend on configuration.

This is evident in the results of the 2009 competi-
tion, in which the two top agents very nearly tied,
using very different approaches. The DeepMaize
agent from the University of Michigan uses very
careful control of inventory and profitability over
a wide range of market conditions, while the Tac-
Tex agent from the University of Texas is more
aggressive and strategic, taking large risks in build-
ing up inventory during low demand periods
when procurement prices are low and exploiting
these inventories when demand recovers and pro-
curement prices rise.

Over the past seven years, considerable progress
has been made in developing effective techniques
and architectures to manage risk in dynamic sup-
ply chain environments, with models from TAC
SCM influencing ongoing work at large companies
such as HP. While research in this area is far from
over and there is still room for very significant
advances, the TAC SCM community will also have
to turn its attention to packaging many of the
technologies it has already developed into human-
oriented decision support tools. These tools will
have to allow supply chain managers to remain in
control of key strategic decisions while delegating
many more minute, real-time optimization deci-
sions to agent-oriented functionality. To be effec-
tive, this line of work will have to identify a mean-
ingful balance between the frequency and level of
details in supply chain updates and decisions it
exposes users to. This balance will have to be suffi-
cient for supply chain managers to feel that they
remain in control of key sensitive decisions where
their own insight is critical. Yet it should not over-
whelm users with information and decisions. Ulti-
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mately, developing mixed-initiative functionality
that meets these requirements will be critical to the
broad uptake of TAC SCM technology. Ongoing
efforts in this area include work on a mixed-initia-
tive version of the MinneTAC agent and of TAC
SCM (Nelson et al. 2009). Early work on develop-
ing mixed-initiative supply chain decision support
functionality was also detailed by Sadeh, Hildum,
and Kjenstad (2003).
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