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Abstract
With the advances of deep learning techniques, text generation is attracting
increasing interest in the artificial intelligence (AI) community, because of its
wide applications and because it is an essential component of AI. Traditional text
generation systems are trained in a supervised way, requiring massive labeled
parallel corpora. In this paper, I will introduce our recent work on search and
learning approaches to unsupervised text generation, where a heuristic objec-
tive function estimates the quality of a candidate sentence, and discrete search
algorithms generate a sentence by maximizing the search objective. A machine
learning model further learns from the search results to smooth out noise and
improve efficiency. Our approach is important to the industry for building min-
imal viable products for a new task; it also has high social impacts for saving
human annotation labor and for processing low-resource languages. Link to
video abstract: https://youtu.be/Xir1e9g6oIc

INTRODUCTION

Text generation is a fundamental and long-lasting prob-
lem in the fields of natural language processing (NLP)
and artificial intelligence (AI), withwide applications such
as conversational agents, news headline generation, and
grammatical error correction. It is related to the foundation
of AI, and is a key component in the Turing test (Saygin,
Cicekli, and Akman 2000). Early text generation systems
are mainly based on rules and templates; thus, the gener-
ated text lacks flexibility and the applications are restricted
to certain narrow domains, for example, report gener-
ation (Kukich 1983) and weather forecasting (Goldberg,
Driedger, and Kittredge 1994; Reiter et al. 2005).
In recent years, deep learning has achieved remark-

able progress in various text generation tasks (Sutskever,
Vinyals, and Le 2014; Vaswani et al. 2017). Due to the
high modeling capacity, deep neural networks are able to
capture the complexity of language, and generate more
diverse and natural texts than early rule-based systems.
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However, neuralmodels are known to be data-hungry, usu-
ally requiring massive labeled input–output pairs, known
as parallel corpora. For example, the widely used corpus
provided by the 2014 Workshop on Statistical Machine
Translation contains more than four million pairs of
English–German sentences (Bojar et al. 2014). This is
prohibitively expensive for deep learning models being
applied to new domains, new tasks, and low-resource lan-
guages.
In this paper, I will introduce our recent progress on

unsupervised text generation, which does not require par-
allel data for training. We formulate the text generation
task as a search problem, where we define a heuristic
objective function, typically involving language fluency,
semantic coherency, and other task-specific constraints.
Then, we perform discrete local search, for example, sim-
ulated annealing (Liu et al. 2020), to generate the output
sentence by maximizing the search objective. Further, a
machine learning model may learn from the search results
to smooth out the search noise and improve inference
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efficiency. In this way, our approach is unsupervised, yet
achieving high performance in a variety of tasks. Empir-
ically, our approach outperforms previous unsupervised
text generationmethods to a large extent, and has a compa-
rable performance to supervised methods for text simplifi-
cation (Kumar et al. 2020). Our study largely bridges the
gap between supervised and unsupervised text generation.
The rest of this paper is organized as follows: I will first

discuss the social impacts of ourwork, followed by detailed
but easy-to-understand technical explanation with exam-
ples and results. Then, I will mention a few important
future directions that extend our current work, and finally
conclude this paper.

SOCIAL GOOD

Unsupervised text generation can benefit our society in
various aspects.
First, unsupervised approaches are important to the AI

industry, which typically requires that a minimal viable
product is seen before investing substantial resources,
including funding and human labor. Therefore, our unsu-
pervised text generation techniques are particularly suit-
able for new tasks and startup companies, where massive
annotated data are either unavailable or not affordable.
Second, unsupervised text generation will help low-

resource language processing. Training supervised deep
learning NLP models requires massive labeled corpora,
which only exist for several most-spoken languages. This
prohibits the applications of the deep learning technique to
low-resource languages. Our approaches, on the contrary,
do not require parallel data, and can be potentially applica-
ble to various text generation tasks in different languages.
Last but not least, our unsupervised techniques save

human labor for data annotation. In machine learning,
massive labeled data are often annotated by mechanical
Turks, and this could be expensive and time-consuming;
asking annotators to write sentences for text generation
tasks is especially cumbersome and often yields poor-
quality corpora. Our unsupervised text generation largely
reduces human labor, as we do not require parallel data.
Even if human-written text is needed for certain tasks, our
approach is able to provide an initial draft for mechanical
Turks to edit.

METHODOLOGY

We tackle unsupervised text generation by search
approaches, where we heuristically define a scoring
function that roughly estimates the quality of a candidate
output sentence given some input in a certain task. Then,

we perform discrete local search to maximize the score
for unsupervised text generation. This is accomplished by
iteratively proposing a local edit of the candidate sentence,
such as word insertion, deletion, and replacement. The
proposed candidate may either be accepted or rejected
depending on its score, although a better sentence is more
likely to be accepted. In this way, we can gradually search
for a high-scored sentence as the output text.

Search objectives

In a standard supervisedmachine learning application, the
task is defined by data sets. For example, if the training
corpus contains pairs of sentences of the same meaning
but different wordings, then the trained machine learn-
ing model will accomplish the paraphrase generation task.
However, defining a task by data sets is not feasible in the
unsupervised setting, as we do not have parallel corpora.
We observe that, in many text generation tasks, the qual-
ity of an output text can often be decomposed into several
aspects, each of which can be modeled relatively easily.
Thus, we may define the task by a heuristically designed
scoring function, as explained below.
We would like the generated text to be fluent, so we

use a language model to evaluate the language fluency of
a given candidate sentence 𝐲 , denoted by 𝑠f luency(𝐲) . A
language model is trained to maximize the likelihood of a
training corpus (Jurafsky andMartin 2009); the underlying
assumption here is that if a sentence is more fluent, then
its likelihood is higher, and vice versa. The languagemodel
can be trained either on a task-specific unlabeled corpus
using a recurrent neural network (Mikolov et al. 2010)
or on large-scale generic corpora with the Transformer
architecture (Radford et al. 2019). Usually, fine-tuning a
pretrained language model on a task-specific corpus will
yield the highest performance. It is noted that none of the
above variants require labeled parallel corpora.
Then, we consider the semantic of the generated sen-

tence given some input. In various text generation tasks,
the semantic of the output should be close to the input;
examples of such applications include paraphrase gen-
eration and summarization. We leverage the embedding
technique (Mikolov et al. 2013), which essentially maps an
object (e.g., a word, a phrase, or a sentence) into a vector
space. The cosine of two embedding vectors indicates how
close two objects are. Again, the embeddings can be given
by either recurrent neural networks (Pagliardini, Gupta,
and Jaggi 2018) or by pretrained languagemodels (Liu et al.
2019). Moreover, we find that in certain applications, we
may enhance the semantic measure by the embeddings of
keywords (Li et al. 2020) and entities (Kumar et al. 2020)
to better preserve the content. In general, we denote the
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semantic scorer by 𝑠semantic(𝐲, 𝐱) for a candidate output 𝐲
given input 𝐱.
There may be additional task-specific constraints, and

we denote our third scorer by 𝑠task(𝐲). In fact, the task-
specific constraint can be either a soft or a hard constraint,
varying largely based on the nature of the task at hand.
For keywords-to-sentence generation, 𝑠task(𝐲) is simply an
indicator function, representing whether 𝐲 contains the
keywords or not (Miao et al. 2019); for text summariza-
tion, 𝑠t𝑎𝑠𝑘(𝐲) indicates whether the output is within the
length budget or not (Schumann et al. 2020); and for para-
phrasing, 𝑠t𝑎𝑠𝑘(𝐲) is counting the fraction of the overlap
between input and output sentences (Papineni et al. 2002),
as a paraphrase cannot be the same as the input.
We may also utilize external engineering for the task-

specific constraint. The text simplification task appears
similar to summarization, but emphasizes the simplicity of
the output, instead of the length. In our study (Kumar et al.
2020), we adopt the Flesch reading ease score (Kincaid
et al. 1975), which involves manually designed features,
such as the sentence length and the number of syllables per
word. Another interesting task is style-transfer generation,
which aims to change the style of a sentence,while keeping
the content, for example, changing an informal sentence to
a formal one (Rao andTetreault 2018). In Li et al. (2020), we
train a classifier in a supervised way based on style labels,
serving as the task-specific scorer 𝑠task(𝐲). It is noted that
the style label is much easier to obtain than parallel cor-
pora of sentence pairs, and our generation still works in an
unsupervised manner.
In summary, our overall scoring function consists of lan-

guage fluency, semantic similarity, and other task-specific
constraints, having the following form:

𝑠(𝐲, 𝐱) = 𝑠f luency(𝐲) ⋅ 𝑠semantic(𝐲, 𝐱) ⋅ 𝑠task(𝐲)

Here, we consider the multiplications of all the individual
scorers because their scalesmay be different. If a scorer can
be negative, it should be normalized to guarantee positiv-
ity. Generally speaking, our scorer estimates the fitness of
a candidate sentence given an input for some task. It serves
as our search objective for unsupervised text generation.

Search algorithms

We search towards the optimum of the objective function
to obtain an output sentence. In supervised text generation,
it is typical to apply beam search (Sutskever, Vinyals, and
Le 2014), which searches for a word at a time but keeps a
fix-sized beam to prevent the search space growing expo-
nentially. This works well with the supervised machine
learningmodel, where the joint probability of a sentence is

decomposed into word-level probabilities, thus providing
step-by-step guidance for the beam search. By contrast, our
objective function yields a score only based on a complete
sentence, instead of a partial sentence. Thus, traditional
beam search is inappropriate in our scenario.
We observe, on the other hand, that the output and input

resemble each other in various text generation applica-
tions. For example, a paraphrase is close to the original
sentence, except that a fewwords and phrases are changed
to synonyms and that the syntactic structure may be mod-
ified slightly; a summary even overlaps with the input
text largely, although clutters and unimportant informa-
tion are dropped. Thus, we propose to tackle unsupervised
text generation by local search. In other words, we start
from the input sentence and iteratively perform local edit-
ing to the candidate sentence to maximize the objective
scoring function.
A local search algorithm is a two-stage process of pro-

posal and acceptance. First, an edit operation is proposed
from a candidate operation set, and then the algorithmwill
either accept or reject the proposal depending on the score
of the resulting sentence.
Our general operations of local editing include word

replacement, insertion, and deletion. At each search step,
we randomly select one of the edit operations. For deletion,
we simply remove the selected word. For insertion and
replacement, we need to propose a candidate word from
the vocabulary. We propose to sample a word according to
the Gibbs distribution (Koller and Friedman 2009) that is
induced from our scorer, that is to say, a word that yields a
better sentence should bemore likely to be sampled. Such a
proposal ismore efficient than uniformly proposing aword
from the vocabulary.
The editing operations may also be designed specifically

to the task. In our study on text simplification (Kumar
et al. 2020), we identify two major types of editing for
simplifying a sentence: substituting a common word and
re-ordering phrases. We use the WordNet (Miller 1995), a
lexical database, to obtain the synonyms, and substitute a
rare word with a more frequently appearing synonym. For
phrase re-ordering,we parse the sentence to a constituency
parse tree (Manning et al. 2014), which is a hierarchical
organization of sentence components (e.g., noun phrases,
verb phrases, and clauses).Wemanipulate the nodes of the
parse tree for phrase re-ordering. It is noted that the pro-
posed edit need not be perfect, as a corrupted sentence will
be filtered out in the acceptance phrase.
Another simple yet interesting example of edit opera-

tion is for text summarization (Schumann et al. 2020).
We notice that, in our application, a summary is often-
times a subset of the input, even with the word order
preserved. Therefore, we generate a summary by word-
level extraction. Suppose we have a budget of 𝑘 words for



AI MAGAZINE 347

(A) (B)

F IGURE 1 Overview of our search-and-learning approach to unsupervised text generation. Alternations may be performed between
search and learning to boost performance. The diagram is adapted from Li et al. (2020)

the summary, our system determines which 𝑘 words to
be extracted from the input as the summary. This largely
reduces the output space and simplifies the search process.
Our edit operation is simply swapping the selection and
nonselection of two words.
Regarding the acceptance stage, our first study (Miao

et al. 2019) adopts the Metropolis–Hastings algo-
rithm (Metropolis et al. 1953; Hastings 1970). This is
essentially a sampling procedure that yields unbiased
samples from the score-induced distribution. Although
it is tempting to sample a sentence from a properly
defined distribution for applications like paraphrasing,
we later realize that optimization (rather than sampling)
will lead to higher empirical performance due to better
convergence; thus, we adopt search algorithms in our
later studies.
Our mostly commonly used search algorithm is simu-

lated annealing (Van Laarhoven and Aarts 1987), which
also works in a propose-and-accept manner (Liu et al.
2020; Li et al. 2020; Dong et al. 2021). Generally, if the
proposed sentence has a higher score, then the sen-
tence is directly accepted. If the proposed sentence has
a lower score, then it tends to be rejected. However, a
worse sentence may still be accepted to better explore
the search space, controlled by a temperature hyperpa-
rameter. If the temperature is high, then the algorithm is
more exploratory, accepting more low-scored sentences.
If the temperature is low, the algorithm is more greedy.
Simulated annealing starts from a high temperature but
gradually cools down during the search process, analogous
to chemical annealing. This differs from Metropolis–
Hastings sampling, because simulated annealing aims to
converge to an optimum.
In certain applications, a hill-climbing algorithm may

also work well. Hill climbing is greedy search that only
accepts better sentences. We adopt hill climbing for
summarization, where we have design a simpler search
space (Schumann et al. 2020), and for simplification,
where we have dedicated engineering on edit opera-
tions (Kumar et al. 2020).
Figure 1A illustrates the scoring function 𝑠(𝐲, 𝐱) and our

search algorithm. Table 1 further summarizes the design

of search objectives, edit operations, and search algorithms
for different tasks in our studies.

Learning from search results

Admittedly, search-based text generation has its own
disadvantages. First, our search objective is heuristi-
cally defined by several decomposed evaluation criteria.
Although it correlates with output quality in the popula-
tion level, the objective function may not be suitable for
every single data sample. Moreover, our algorithm is slow
when deployed because the search process requires several
hundred iterations of proposals and re-evaluations. This
prevents our approach from real-time applications.
To address the above drawbacks, we propose in Li

et al. (2020) to train a machine learning model that learns
from the search results. Specifically, we adopt a pretrained
languagemodel (Radford et al. 2019) and fine-tune it based
on the input and the search algorithm’s output to estimate
the probability �̂�(𝐲|𝐱).
As known, a machine learning model pools together

the knowledge of the individual samples, and thus is
able to smooth out the noise of our heuristically defined
objective function, demonstrated in Figure 1B. Empirically,
our trainedmachine learningmodel immediately achieves
higher performance than the search algorithm. In addi-
tion, this gives us 5–10 times speed-up in the deployment
because the machine learning model predicts an output
sentence in a word-by-word fashion.
Since our machine learning model outputs a better sen-

tence than search, we may further feed it as the initial
search candidate. It serves as a more meaningful starting
point for the search algorithm than copying the input sen-
tence. We alternate the search and learning processes to
boost the performance.
Our idea of search and learning is similar to reinforce-

ment learning (Sutton and Barto 2018). For example, the
AlphaGo system performs Monte Carlo tree search for the
Go game, and trains a neural network model from search
results, outperforming world-class professional human
Go players (Silver et al. 2017, 2018). We instead perform
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TABLE 1 Applications of unsupervised text generation

Task
Task-specific
constraint Edit operation Algorithm Study

Grammatical error
correction

None Word editing Metropolis–Hastings
sampling

Miao et al. (2019)

Paraphrasing Different wordings Word editing Simulated annealing Liu et al. (2020)
Summarization Length Word selection Hill climbing Schumann et al. (2020)
Simplification Ease score (Kincaid et al.

1975)
Word/syntactical
editing

Hill climbing Kumar et al. (2020)

Style-transfer
generation

Style accuracy Word editing Simulated annealing Li et al. (2020)

TABLE 2 Examples of our unsupervised text generation in
selected applications. References are the provided output sentences
for the evaluation purpose; they are not used for training in our
unsupervised setting.

Task Keywords-to-sentence generation (Miao et al.
2019)

Input Lottery, scholarships
Output But the lottery has provided scholarships.
Task Grammatical error correction (Miao et al. 2019)
Input Even if we are failed, we have to try to get a new

things.
Reference Even if we all failed, we have to try to get new

things.
Output Even if we are failing, we have to try to get some

new things.
Task Paraphrasing (Liu et al. 2020)
Input Where are best places for spring snowboarding in

the US?
Reference Where is the best place to snowboard in the US?
Output Where can I find the best places in the US for

snowboarding?
Task Summarization (Schumann et al. 2020)
Input A German registered container ship ran aground

at the entrance to the French port of Le Havre
early Tuesday, but authorities said there were
no casualties.

Reference Container ship runs aground in French port.
Output A container ship ran aground but there were no

casualties.

local search, such as simulated annealing, based on the
characteristics of our own problems.

Applications and results

Our search-and-learning approach is a generic framework
for unsupervised text generation, and can be applied to
a variety of applications. Table 2 shows sample output

F IGURE 2 An example of the editing process for paraphrase
generation (Miao et al. 2019). The rejected edits are omitted for
clarity

in four tasks, namely, keywords-to-sentence generation,
grammatical error correction, paraphrase generation, and
summarization. For example, the sentence “Where are best
places for spring snowboarding in the US?” is paraphrased
as “Where can I find the best places in theUS for snowboard-
ing?” where our approach performs nontrivial editing. As
seen, our approaches indeed generate meaningful out-
put in each task, although it may be different from the
reference output.
Figure 2 further demonstrates the dynamics of our edit-

ing in the paraphrase generation task. Given an input
sentence “What movie do you like most?,” our approach
suggestsmeaningful edits for paraphrasing, such as replac-
ing what with which and replacing most with best.
Although the intermediate sentences may not be perfect
(e.g., “Which movie do you think best?”), our approach is
able to further insert the words is the to make the sentence
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TABLE 3 Performance of paraphrase generation on a Quora
dataset. The iBLEU metric measures the similarity against the
reference, penalized by the similarity against the input; a higher
score indicates a better model. Our search and learning results are
quoted from Li et al. (2020).

Category Method iBLEU
Supervised methods Qian et al. (2019) 14.83

Fine-tuning
GPT-2 (Radford et al.
2019)

19.19

Distant supervision Round-trip translation 14.36
Domain adaptation (Li
et al. 2019)

10.36

Unsupervised
methods

Variational
autoencoder (Bowman
et al. 2016)

8.16

Our search approach 14.52
Our search and learning 17.48

fluent. The best candidate along the search process will be
selected as the output.
Quantitatively speaking, our search and learning

approaches achieve high performance in all the above
applications. Table 3 lists the performance of our
approaches compared with various competing mod-
els in different categories. As seen, both search-based
and search-and-learning systems largely outperform
the previous unsupervised paraphrase generator, given
by a variational autoencoder (Bowman et al. 2016).
Although our unsupervised performance is worse than
fine-tuning the pretrained language model (Radford
et al. 2019), we outperform a recent competitive super-
vised system based on reinforcement learning (Qian
et al. 2019). In text simplification, we see a similar trend
that our unsupervised approach achieves compara-
ble performance to supervised systems (Kumar et al.
2020).
In the industry, round-trip translation is widely used

for paraphrasing, and in turn, for data augmentation.
The idea is to make use of a machine translation sys-
tem, translating a sentence into a foreign language and
translating it back to obtain a paraphrase. This requires
parallel data of translation rather than paraphrasing,
known as distant supervision. Our search-and-learning
approach also largely outperforms the paraphrasing sys-
tem based on round-trip translation. I fully believe that
our search-and-learning framework will become a widely
adopted industrial practice in the near future, as it largely
bridges the gap between supervised and unsupervised text
generation.

FUTURE DIRECTIONS

The work described in this paper presents a novel idea in
the NLP field. It also points to several important future
directions of both fundamental and applied research.
One fundamental research question is how to per-

form efficient search in the sentence space, which can be
inspired by the reinforcement learning community. Our
framework resembles the search and learning in rein-
forcement learning (Sutton and Barto 2018). However, text
generation has its own challenges compared with other
domains, such as videos games and the Go game. First, we
have a larger branching factor than even the very challeng-
ing Go game; that is to say, for each generation step, we
may have tens of thousands of words to consider from the
entire vocabulary. Second, reinforcement learning highly
depends on the reward function (i.e., the scoring function
in our paper), which serves as the entire training signal.
For example, the reward in a game could be the binary
indicator of success or failure; in a typical reinforcement
learning application, the reward function is often accurate,
albeit noisy. However, our scoring function may be deter-
ministically incorrect for certain samples, as it is defined in
a heuristic way. It remains unclear how these factors will
affect the search process.
Sha (2020) proposes a gradient-based approach for

searching in the lexical space. The gradient provides infor-
mative guidance for the proposal. However, Sha’s current
approach requires a differentiable scoring function, and
it only works in the word level. It would be a promis-
ing direction to generalize the gradient-based editing in
future work.
Another important extension is to propose edit opera-

tions beyond the word level. As seen in Figure 2, local
editing yields low-quality intermediate candidate sen-
tences because our search algorithm may not be greedy,
and this helps to explore a wide range of the sentence
space. However, such editing proposals are more likely
to be rejected due to the calculation of the acceptance
rate. Therefore, it is tempting to propose editing in the
phrase level, for example, replacing the phrase like most
to think is the best in one step of editing. Although we
have attempted syntax-based phrasal editing in Kumar
et al. (2020), our current treatment is still rudimentary as
we only support phrase re-ordering. Future research may
propose phrasal insertion and replacement by generating
a plausible candidate phrase given a certain position in
a sentence.
Currently, our approach is also restricted in that most of

our tasks require the input and output closely resembling
each other. This may be relaxed with additional heuristics
based on the task. In unsupervised machine translation,
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for example, wemay obtain an initial candidate translation
by dictionary lookup of every word. Then, our approach
can be applied to edit the candidate translation.
For certain tasks, a completely unsupervised approach

may not be feasible because it is hard to decompose a
scoring function into several aspects by heuristics. For
example, it is difficult to articulate what constitutes a high-
quality response in a dialog system. Nevertheless, we may
apply our search and learning approach to address other
research questions. In a recent study of ours (Dong et al.
2021), we adopt the search algorithm to control the emo-
tion of a response. Traditional methods feed the desired
emotion as input information, which may be ignored by
the generation system (Zhou et al. 2018). By contrast, we
directly edit a candidate response to ensure the presence
of the desired emotion, thus generating much richer and
more emotional responses than other dialog systems. In
Jolly, Dengel, andMou (2021), we address few-shot data-to-
text generation, where the goal is to generate a description
based on tabular data with a few samples. We observe
that, in the few-shot setting, important information is
often missing in the output sentence. Thus, we adopt the
search-and-learning approach, where we insert the miss-
ing information to improve semantic coverage, and further
learn from the search results to improve fluency and effi-
ciency. In this way, we only use 1% of parallel data but
achieve comparable performance to supervised learning
with the entire data set.
Our work also opens wide applications beyond the natu-

ral language domain. In a recent study (Liu et al. 2021), we
extend the simulated annealing to graph processing in the
domain of molecule optimization. Our goal is to improve
the hydrophobicity of amolecule, andwemanage to design
a scoring function that estimates hydrophobicity and
molecule similarity; we further propose edit operations
on graphs including node and edge insertion, deletion,
and replacement. Experimental results show that, com-
pared with previous molecule optimization methods, our
approach significantly improves the hydrophobicity of a
molecule by a series of local edits, while preserving other
chemical characteristics. This further shows the generality
of our approach for different types of data and in different
domains. The key to the applications is the design of search
objective and edit operations.

CONCLUDING REMARKS

In this paper, I present our recent progress on search
and learning approaches to unsupervised text generation,
wherewe do not have parallel data for training.We define a
heuristic scoring function that estimates the quality of the
output text given input for a certain task. Then, we formu-
late text generation as a search problem, and adopt discrete

search to maximize the objective score. We may further
train a machine learning model from the search results to
smooth out search noise and improve inference efficiency,
while keeping the unsupervised nature.
We have applied our framework to a variety of appli-

cations, including paraphrase generation, summariza-
tion, text simplification, keywords-to-sentence generation,
grammatical error correction, and style-transfer gener-
ation. Our approach can be further adapted to other
controllable text generation in the supervised or few-
shot settings. I also point out a few important future
directions, including efficient search in the sentence
space and applications to other domains beyond natural
language.
Our search and learning approaches to unsupervised

text generationwill largely benefit theAI industry, because
the unsupervised nature is helpful in building new prod-
ucts, especially for small businesses. Our work will also
have positive social impacts in processing low-resource
languages and saving human labors for data annotation.
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