
Centralized search engines cannot
cover the entire web (Lawrence and
Giles 1999) because it is too large,

fast-growing and fast-changing (Brewing-
ton and Cybenko 2000; Fetterly et al.
2003; Ntoulas, Cho, and Olston 2004). As
a result, current centralized search engines
focus on “important” portions of the web.
However, the notion of importance is
highly subjective: the biases that are intro-
duced to address the needs of the “aver-
age” user can result in diminished effec-
tiveness in satisfying many atypical search
needs. Therefore, the “one engine fits all”
model cannot handle the increasing size,
rate of change, and heterogeneity of the
web and its users. In addition, as search
becomes more prevalent at the desktop
level, users will increasingly want to make
subsets of the files indexed in their com-
puters available to others through the
Internet. Peer networks provide us with an
architecture for extending web search
technology to capture the contextual
needs of a diverse population of users,
while leveraging their resources.

There are several models of peer net-
work topologies and query protocols,
including structured, unstructured, flood-
ing, distributed hash tables, and hierarchi-
cal (Androutsellis-Theotokis and Spinellis
2004). Our design of a collaborative web
search network is guided by the principle
of semantic locality: peers with shared
interests are likely to communicate with
each other more frequently than unrelat-
ed agents, so they should be able to reach
each other in a few virtual hops. However,

a dense network would generate too
much traffic. A good topology favors both
effectiveness and efficiency, by making it
possible for a query to reach a relevant tar-
get peer in few steps, without imposing a
large traffic load on the entire network.
Small-world networks (Watts and Strogatz
1998) provide both clustered communi-
ties and enough randomness to keep the
network distance small between any two
peers. Effective search requires that the
clusters be associated with a high seman-
tic similarity between neighbors (Watts,
Dodds, and Newman 2002). Because there
is no global knowledge of the network
(what peers are currently present, what
information they hold, and what infor-
mation they seek), and the network is
very dynamic (peers may join and leave
the network at any time), we cannot
impose semantic locality into the network
by design; instead, we explore AI tech-
niques through which semantic locality
will emerge as the result of local interac-
tions and learning by individual peer
agents.

Our research group is currently devel-
oping 6S, an intelligent  multiagent appli-
cation for peer-based web search (Wu,
Akavipat, and Menczer 2005; Akavipat et
al. 2006). The name is a contraction of
“six degrees of separation” and “search,”
to reflect the social network of peer agents
at the base of the collaborative search
process. Each 6S peer agent is both a (lim-
ited) directory hub and a content
provider; it has its own topical crawler
(based on local context), which supports a
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� Collaborative query routing is a new
paradigm for web search that treats both
established search engines and other pub-
licly available indexes as intelligent peer
agents in a search network. The approach
makes it transparent for anyone to build
his or her own (micro) search engine by
integrating established web search servic-
es, desktop search, and topical crawling
techniques. The challenge in this model is
that each of these agents must learn about
its environment—the existence, knowl-
edge, diversity, reliability, and trustwor-
thiness of other agents—by analyzing the
queries received from and results
exchanged with these other agents. We
present the 6S peer network, which uses
machine-learning techniques to learn
about the changing query environment.
We show that simple reinforcement learn-
ing algorithms are sufficient to detect and
exploit semantic locality in the network,
resulting in efficient routing and high-
quality search results. A prototype of 6S is
available for public use and is intended to
assist in the evaluation of different AI
techniques employed by the networked
agents.



local search engine—typically, but not necessarily,
a small one. As shown in figure 1, queries are first
matched against the local engine and then routed
to neighbors to obtain more results. While receiv-
ing responses, an agent may discover new peers
through its current neighbors. The new neighbor
peers can later contact each other directly. 

Figure 2 compares the collaborative search net-
work framework with existing search models. Two
major features we want to merge are contextual
learning (as in intelligent web agents) and social col-
laboration (as in file-sharing peer networks). Intel-
ligent web agents leverage local context from both
the user and the information environment while
learning to perform their tasks. Similarly, 6S agents
use the local context captured from the user and
from interactions with other peers as they learn to

route queries to the most appropriate neighbors.
The local user context of a 6S agent is a document
collection created by the user.

With respect to social collaboration, 6S agents
use a network to share information through
queries and responses, as do nodes in a peer-to-
peer (P2P) network. Without relying on a central-
ized resource collection, our search model emu-
lates the information finding and spreading
mechanisms in social networks. However, power-
ful central search engines such as Google and
Yahoo can very well contribute to and profit from
the social collaborative framework; indeed we
expect that they would quickly turn into popular
hubs thanks to their large collections and popular-
ity-driven ranking algorithms. Therefore, our mod-
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Figure 1. The 6S Search Mechanism and Peer Discovery.

The 6S application is designed not to have peers aggressively flooding the network for searching or discovering new peers. Therefore, the
6S peer only forwards its query to a small number of selected neighbors. A time-to-live mechanism ensures that a forwarded query will not
survive in the network too long. Here Alice’s agent A receives good results from agent C for Query 1. These results are forwarded through
B. Later, A can send Query 2 directly to the newly discovered neighbor C.



el of collaborative web search allows users to inte-
grate both centralized and social search engines
transparently. As in file-sharing networks, the
incentive for people to collaborate is selfish—they
can profit by participating in the network as they
gain access to additional sources tailored to their
needs.

Implementation and 
Deployment of 6S

The 6S application is designed to make it easy and
transparent for users to index and share a collec-
tion of web pages, that is, to build a “micro search
engine.” A 6S servent (server + client) application
integrates a topical crawler, a document-indexing
system, a retrieval engine, a P2P network commu-
nication system, and a contextual learning system.
In the current implementation, 6S relies on two
open-source platforms: Nutch (nutch.org) for its

search engine and JXTA (Waterhouse 2001) for the
P2P network communication framework.

From the user’s perspective, the main features of
6S are peer search, a personal web index manage-
ment system, and a browser extension. The peer
search functionality is an extension of local search.
Local search is performed using the built-in search
engine to provide users with relevant results from
their local collections. Next, the application auto-
matically selects neighbors that are best suited to
answer the user’s query based on the peer’s prior
query-response experience and sends the query to
those peers. (Using the same mechanism, those
neighbors forward the query to other peers, and so
on; see figure 1.) Finally, the results obtained local-
ly and from other peers’ responses for the same
query are combined to remove duplicates,
reranked based on a simple voting algorithm, and
then presented to the user. Results are updated
dynamically as they arrive. 

Behind the scenes, the application analyzes the
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The two dimensions of search systems are (1) the degree of social collaboration—as, for example, among networked
agents—and (2) the degree of user contextual learning as in intelligent web agents such as InfoSpiders (Menczer and
Belew 2000), focused crawlers (Chakrabarti, van den Berg, and Dom 1999), and other topical crawlers.



results received from other peers, comparing them
to the local search results, to learn a representation
of the other peers. This representation is then used
to improve the peer-selection algorithm, which is
at the heart of the query-routing process. The
details of the machine-learning algorithm used for
this purpose are discussed below. The more a user
employs the peer search network, the more she
trains the system to better locate relevant informa-
tion in the future.

The personal web index management system
helps a user automatically create a web index. In
fully automated (one-click) mode, the application
selects pages from a local bookmark file and sup-
plements them with results from a topical web
crawler. Consider for example a user Alice. The
application analyzes the queries in her web search
history to construct a topic description, then
launches the crawler. This process takes place the
first time Alice sets up her peer, if she so chooses.
Subsequently, 6S periodically updates the index
with new additions from Alice’s bookmarks or with
a new topical web crawl based on her recent search
history and current web index.

As shown in figure 3, the index management fea-
ture also allows users to manually create or add to
the personal index or to launch crawlers with start-
ing seeds and topics of choice. The current imple-
mentation employs a best-N-first topical crawler,
which has been proven both efficient and effective

for supporting a dynamic search engine among a
number of crawling algorithms (Pant, Bradshaw, and
Menczer 2003; Menczer, Pant, and Srinivasan 2004).
Briefly, the crawler is given a set of topic keywords
that are either entered by the user or extracted from
the user’s web search history and a number of seed
pages that are obtained from the user’s personal
bookmarks and/or the local document collection.
The URLs to be visited are prioritized by the similar-
ity between the topic and the page in which a URL
is encountered. Some additional mechanisms guar-
antee that the crawler is sufficiently exploratory.
This crawler is publicly available (informatics.indi-
ana.edu/fil/IS/JavaCrawlers). Once the index is built,
the user can manage (tag, modify, delete, or recover)
any indexed documents. For example Alice may
index the documents in a review folder and provide
a topic, “data mining,” to guide the crawler. She can
modify or tag the indexed documents as well.

An extension for the Firefox web browser
enables convenient access to 6S while the applica-
tion is active as a background process. As shown in
figure 4, users can submit search queries to the
local peer and the 6S network, see the results
returned though the network, and instruct the
application to index new pages—all from the
browser. Search results are shown along with the
usual information, as in any traditional search
engine (title, snippet, and so on), as well as infor-
mation about the peers that provided each result.
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Figure 3. Setup of a 6S Peer.

To create a personal web index, the user may provide a crawling topic, a number of seed pages extracted from the user’s bookmarks, or a
local document collection. These cues are used to guide a topical crawler. The crawling results are then indexed for keyword searching. For
each indexed document the user can assign or modify tags, which are searchable by the local engine. Users can also delete/undelete any
document entries or remove/update the entire index.



To export pages to the local peer and share them
with the 6S community, users can use the Book-
marks drop-down menu and select options to
index all the bookmarks or just the current page.
The latter option is also available in a contextual
(right-click) menu. For example, upon receiving a
relevant page from another 6S peer in response to
a query about “social networks,” Alice may choose
to bookmark this page in her local 6S index, thus
making it possible to share this page with other
peers with related queries in the future.

Inside a 6S Agent
Each 6S agent uses a reinforcement learning algo-
rithm to track the profiles of other peers based on
their past interactions. A neighbor profile is the
information that a particular agent maintains to
estimate the neighbor’s likelihood to provide rele-
vant results for various keywords. For example, if a
neighbor has previously provided good results for
Alice’s query “open source software,” her agent
should internalize this information so as to predict
that this might be a good peer to forward a future
query on “free software.” By learning profile infor-
mation, agents try to increase the probability of
choosing appropriate neighbors for their queries.

Interactions with peers reveal information of
varying reliability. We want to capture all available

information in profiles but must discriminate cues
on the basis of their reliability. To achieve this goal
we let each peer maintain two profiles for focused
and expanded information, respectively. The
focused profile concerns only query terms, while
the expanded profile includes keywords that co-
occur frequently with query terms within hit
pages. Each profile has the same structure and is
represented as a matrix W, where each element wp,k
is an estimate of how knowledgeable and reliable is
peer p with respect to keyword k. When p returns
results for a query containing k, wp,k is updated to
reflect the quality of these results. The results from
p are compared to local ones to obtain a reinforce-
ment signal: good results induce a reward, by
which wp,k is increased, while poor results induce a
penalty and wp,k is decreased. The update occurs
through a running average to slowly forget past
performance while tracking new information. One
of the main motivations behind this approach is
that the learning context is likely to be extremely
nonstationary, with highly dynamic peers’ inter-
ests and collections. Details are illustrated in figure
5. Suppose for example that Alice submits the
query “Lama,” and that Peer 10 returns a set of hits
with an average score of S10 = 0.8. Further suppose
that the results from Alice’s local index yield an
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Figure 4. Accessing 6S Using a Firefox Extension.

With 6S running as a background process, a user can access 6S without leaving the web browser through the 6S extension for Firefox. It
allows the user to search through the 6S community, export bookmarks to 6S, or index a single web page. All these operations can be done
with only a few clicks.



average score of S1 = 0.2. If the previous value of
the weight associated with the term “Lama” in
Alice’s profile of Peer 10 was zero, the new value
would be wf

10,Lama = 0.5γ, where γ is a learning rate
(0 < γ < 1). For  multiword queries, the same update
rule is applied to each term in the query.

In principle, a peer could track an arbitrarily
large number of other agents. Every time that a
new agent is discovered, its profile can be added to
W. In practice, the size of W may be limited by
storage availability. An agent can drop profiles for
the least promising peers when space shortage
requires it. Queries can only be routed to known
agents, that is, those whose profiles are in W. To
route a new query, known peers are ranked by the
similarity between their profiles and the query, as
shown in figure 6.

Each 6S agent uses the above peer learning and
query-routing algorithms to refine a model of the
other peers. The collaborative network in 6S is
formed by the dynamic communication among
the peers: queries and responses being sent and for-
warded. The instantaneous topology of such a col-
laborative network reflects several dynamic
processes: the changing web collections indexed
by the peers, the evolving information needs of the
users, and the knowledge that agents learn about
others. Initially, when peers know nothing of each
other, queries are routed randomly, and we observe

a random network topology. As 6S agents refine
their internal models of others based on observed
queries and responses, query routing becomes
more content driven. Semantic locality means that
queries should be routed efficiently toward knowl-
edgeable peers, and peers with similar interests
should end up closer in the collaboration network.
We postulate that such a locality should lead to the
emergence of semantic clusters, as illustrated in fig-
ure 7, and thus prevent congestion.

The 6S Collaboration Network
Before the 6S prototype was developed, we experi-
mented with a number of peer representations and
machine-learning algorithms for query routing by
running simulations with realistic synthetic users
and queries. The details of these simulations and
our findings have been reported elsewhere (Wu,
Akavipat, and Menczer 2005; Akavipat et al. 2006).
We found five promising properties about the 6S
network, highlighted by these experiments: (1)
The agents rapidly form clusters (spontaneous
groups that communicate more within the group
than outside), displaying a query topology that
converges to a small-world network after each peer
has routed as few as five or six queries, and this
change in topology leads to an increase in the
quality of the results. (2) The clusters, which are
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A peer’s response to a query can indicate a peer’s knowledge with respect to that query. This knowledge is captured by the focused profile,
Wf. In addition, keywords that co-occur with query terms within hit pages may reflect (less reliable) information about the peer’s knowl-
edge. This is captured by the expanded profile, We.



formed by agents’ query traffic, identify commu-
nities of peers with similar interests, indicating
that the network exhibits semantic locality. (3) The
collective search performance of the network
improves when more sophisticated learning algo-
rithms are employed by the agents to route
queries, and as more network resources become
available. Performance degrades gracefully as
bandwidth and CPU cycles become scarcer. (4) The
6S peers achieve a search quality (in terms of pre-
cision and recall) that is comparable to that of
Google and significantly outperform a centralized
search engine with the same resources (crawl size)
as the combined 6S peer collective. (5) The 6S algo-
rithms scale well up to 500 peers, the maximum
number of users we were able to simulate in a
closely controlled testing environment. 

Since the release of the 6S prototype, we have
been tracking a small community of early adopters
to see if these results hold “in the wild.” This user
study is designed to observe how people use 6S and
how the collaborative search network evolves with
users’ activities. To this end, data is recorded and
transmitted from participants’ computers to a col-
lection server through a secure channel once a day.
The data collected includes query routing infor-
mation, queries, results, size of personal web index,
and most common indexed terms. Figure 8 plots
the activity of the network in its first 12 weeks of

life. The data and feedback we are collecting are
helping to improve the software by making it more
transparent, persistent, robust, and interactive. For
example, in the prototype used to collect this data,
the application does not run in the background, so
that users quitting the application automatically
leave the network. This behavior has been changed
in recent releases, so that a peer can remain active
and useful even when the user is not interacting
with it.

Figure 9 visualizes the collaborative search net-
work. We can distinguish the query network,
which shows the propagation of queries among
peers, from the response network, which shows
who provides results to whom. There is evident
heterogeneity in the number of queries received
and results sent. One of the nodes in the network
is a special peer that submits queries to the Yahoo
search engine through its application program-
ming interface (API) and returns the results
obtained from Yahoo. This node is effectively
“Yahoo in disguise”—but the other peers know
nothing of its identity. We wanted to determine
whether the network would learn to rely on this
peer, which is clearly very good, given its universal
expertise. Indeed, the Yahoo peer does become
very central, with the highest number of incoming
queries and also the highest number of incoming
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For forwarding a query, known peers are ranked by similarity  between the query and the peer profiles. The reliability parameter regulates
the contributions of focused and expanded profiles. Typically 0.5 < < 1 to reflect higher confidence in focused profile weights as they come
from direct responses to queries.



edges (peers that forward queries to it) for most of
the experiment duration. It also provides many
results to other peers.

To visualize the query network (shown on the
left side of figure 9), we aggregated the queries
routed during week 12 of our user study. This was
the week with the largest number of active peers.
Edge width is proportional to the number of
queries exchanged between two peers. The area of
each node is proportional to the number of queries
received by the peer, which is an indirect measure
of centrality, authority, or reliability of the peer as
learned by the other agents. To visualize the
response network (shown on the right side of fig-
ure 9), we aggregated results sent during week 6,
which was the one with the largest number of
queries and responses. This network is visualized
from end to end, that is, an edge directly connects
the provider and the receiver of a result, irrespec-
tive of the chain of peers through which the results
were actually routed. Edge width is proportional to
number of results exchanged, and node size is pro-
portional to number of results provided. Thus,
larger nodes are more helpful. In both networks,
inactive nodes (those with no incoming queries or
outgoing results) are not shown. The node marked
with a white rectangle is the Yahoo search engine

in disguise (see the previous paragraph); by design,
this peer does not generate or forward queries, yet
it is the most popular target of queries and the sec-
ond most productive provider of results.

Figure 10 plots the small-world statistics of the
6S collaborative query network within our user
study period. The diameter is defined as the average
shortest path across all pairs of nodes (with adjust-
ments to deal with disconnected networks). The
network’s clustering coefficient is the average of
nodes’ clustering coefficients, across all nodes. An
individual node i’s clustering coefficient ci is the
fraction of triangles in which i participates, out of
the possible ones. That is, ci is the number of pairs
of neighbors of i that are also neighbors of each
other, divided by the total number of pairs of
neighbors of i. It is interesting to compare these
measures with what one would observe in a ran-
dom network that is known to have a very short
diameter and a very small clustering coefficient.
Therefore, for each week, we construct an ensem-
ble of random networks with the same numbers of
nodes and edges as the 6S networks. Then we
measure by how much the diameter and clustering
coefficient in 6S exceed the average ones from the
random networks. As figure 10 shows, the diame-
ter remains small but the clustering coefficient
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Figure 7. Semantic Locality in Emergent 6S Communities. 

(The networks shown are a conceptual mock-up.) Agents initialize and maintain peer profiles by first asking a neighbor for its description,
defined as a list of most frequent keywords in the neighbor’s index, and then updating these profiles through query/response interactions.
Such interactions cause the peers to route queries in such a way that peers with similar interests cluster together to find quality results quick-
ly (high clustering coefficient), while it is still possible to reach any peer in a small number of steps (small diameter).



grows considerably. These conditions indicate the
emergence of a small-world topology in our peer
network (Watts and Strogatz 1998).

Related Work
A P2P computer network relies on the computing
power and bandwidth of the participants in the
network rather than concentrating it in a relative-
ly few servers. The most popular use of a P2P net-
work is for file sharing. Applications such as
Gnutella, BitTorrent and KaZaa (Androutsellis-
Theotokis and Spinellis 2004) allow peers to share
content files without having to set up dedicated
servers and acquiring large bandwidth to support
the whole community. P2P file-sharing applica-
tions are by no means replacing dedicated servers
in content distribution. They simply provide an
alternative for content distribution by trading the
speed and reliability of dedicated servers for the
ease of sharing, lower cost, fault tolerance, and
lower bandwidth requirement of a file sharer.

Just as P2P file-sharing applications are used to
facilitate content distribution, P2P applications
can be developed to facilitate web search. There is
a wide variety of peer-based search applications.
For example, a model proposed by the YouSearch
project is based on maintaining a centralized
search registry for query routing (such as Napster),
while providing the peers with the capability to
crawl and index local portions of the web (Bawa et
al. 2003). NeuroGrid employs a learning mecha-
nism to adjust metadata describing the contents of
nodes (Joseph 2002). A similar idea has been pro-
posed to distribute and personalize web search
using a query-based model and collaborative filter-
ing (Pujol, Sangüesa, and Bermúdez 2003).

An intermediate approach between the com-
pletely decentralized flood network (as in Gnutel-
la) and the centralized registry is to store index lists
in distributed, shared hash tables (Suel et al. 2003).
In pSearch (Tang, Xu, and Dwarkadas 2003), latent
semantic analysis (Deerwester et al. 1990) is per-
formed over such distributed hash tables to pro-
vide peers with keyword search capability. Anoth-
er alternative is that of hybrid peer networks, in
which multiple special directory nodes (hubs) con-
struct and use content models of neighboring
nodes to determine how to route query messages
through the network (Lu and Callan 2003).

Similar ideas are receiving increasing attention
in the multiagent literature. For example, a model
proposed by Bulka, Gaston, and desJardins (2006)
includes a learning algorithm by which each agent
uses local information and previous experience to
refine a classifier. The agent then uses the classifier
to decide which agent groups to join or whether to
form a new group to complete a task. Pearce and
Tambe (2007) study optimal collaborative strate-

gies based on local interactions for teams of agents
to solve distributed constraint optimization prob-
lems.

Status and Future Work
The 6S application is freely available at Six-
earch.org. We hope to attract a community of
users, which will allow us to test its scalability and
robustness, while improving its usability and effec-
tiveness. Because collaborative peer search repre-
sents a new paradigm for web search, the interface
between the 6S network and its users is critical. It
is important that we understand how users interact
with 6S and how to best keep their experience pos-
itive. The user study, still under way, should pro-
vide us with information that will help improve
6S. If users continue to find 6S useful, they will
maintain their presence in the peer network.

We plan to explore additional learning algo-
rithms to improve the performance of 6S’s adap-
tive query routing. For example, we want to mine
the streams of queries and responses that are for-
warded though a peer. In the Gnutella v0.6 file-
sharing network, peers tend to issue queries that
are very similar to the content of files they have
available for sharing (Asvanund et al. 2003). This
suggests that a profile of a peer’s knowledge should
be updated based on the queries the peer issues in
addition to the query responses that it produces.
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Figure 8. Activity on the 6S Network in the 12 Weeks after the 
Prototype Release (January–April 2007).

The number of active users (those who submit and forward queries) has
increased slowly from about 20 to almost 40. Note that participants can join
or leave the network arbitrarily. The query traffic through the network is
rather variable, with bursts following releases of software updates.



Another technique we would like to examine,
query relaxation, was proposed in a semantic web
setting (Tempich, Staab, and Wranik 2004). A peer
that queries for Research Description Framework
(RDF) data assumes that a neighbor may have
knowledge about a topic or query if it has knowl-
edge about a more specific version of the topic or
query. While our application is arguably more dif-
ficult due to the unstructured nature of generic

web pages, we hope that the promising scalability
results obtained for semantic web data will gener-
alize to web information retrieval.

A number of other information-retrieval tech-
niques are also under consideration. For example,
profiles in the current prototype are based on sim-
ple vector space representations. Similarity
between queries and documents is based on sim-
ple vector cosine measures. While these techniques
are well established, they have limitations when
one considers keyword sparsity, ambiguity, syn-
onymity, and so on. Richer representation, for
example based on co-occurrence statistics (for
example, LSI [Deerwester et al. 1990]) or semantic
ontologies (for example, WordNet) could address
some of these issues.

A peer selection algorithm should be able not
only to determine which peers are best suited for a
given query but also to predict which combina-
tions of peers provide the least-redundant results.
Existing peer selection algorithms take into
account only the predicted query-specific precision
quality of known peers for peer ranking. In a pure-
ly unstructured network such as 6S, however, each
peer crawls the web independently based on its
own interests, without any central control mecha-
nism. As a result, it is likely that peers with similar
interests will have a high degree of overlap
between their document collections. Consider the
extreme case of two peers with identical collec-
tions. In a naive peer selection approach, if one
peer is selected as a good neighbor, the other peer
will definitely be selected as well. However, for-
warding a query to both peers will generate no
more relevant results than submitting to one peer
alone, due to their collection overlap. We are inves-
tigating extensions to the peer selection algorithm
in which a peer would pay attention to the overlap
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Figure 9. Weekly Snapshots of Two 6S Collaborative Search Networks. 
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Figure 10. Relative Difference between the Diameter and 
Clustering Coefficient of the Collaborative Query Network 

and Those in Random Networks.

To measure both diameter and clustering coefficient, we disregard edge direc-
tionality. Trend lines show that the diameter remains equal to the random
graph diameter, while the clustering coefficient increases considerably, com-
pared to the random graphs.



between two neighbors in order to maximize recall
as well as precision.

Finally, in developing a collaborative peer-based
search network, one has to think about protecting
the system from abuse. For example, by exploiting
knowledge of how peers learn from query interac-
tions, attackers can craft their responses to make
targeted peers favor the attackers for future query-
ing while directing users to spam content. Collud-
ers can also set up peers that provide some high-
quality responses but mixed with pointers to
spamming peers. In addition, the victims may
inadvertently help the attackers by forwarding
other peers’ queries to them, thus exposing those
peers to the same response attacks. To prevent such
exploitation, a collaborative search network such
as 6S needs a security component. We are working
on a reputation system that can help distinguish
spammers from honest peers.
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