
■ This article provides an overview of the nature and
role of autonomy for space exploration, with a bias in
focus towards describing the relevance of AI tech-
nologies. It explores the range of autonomous behav-
ior that is relevant and useful in space exploration
and illustrates the range of possible behaviors by pre-
senting four case studies in space-exploration sys-
tems, each differing from the others in the degree of
autonomy exemplified. Three core requirements are
defined for autonomous space systems, and the
architectures for integrating capabilities into an
autonomous system are described. The article con-
cludes with a discussion of the challenges that are
faced currently in developing and deploying auton-
omy technologies for space.

Space exploration is a testament to the human
desire to better understand our world and the
universe that surrounds us. As NASA and oth-

er space agencies around the world formulate and
deploy missions to return to the moon and explore
Mars and beyond, the realization is emerging that
smarter mobile systems that are themselves instru-
ments of knowledge and understanding must be
developed that can respond to the uncertain envi-
ronment in which they are operating with limited
human intervention. In addition, there is a contin-
uing urge to reduce the overall cost of operating in
space, and it is reasonable to believe that substan-
tial savings can be realized by automating space
vehicle operations and maintenance.

The need for automated operations in space
applications is well known. Stringent communica-
tions constraints (limited communication win-
dows, long communication latencies, and limited
bandwidth), limited access and availability of oper-
ators, limited crew availability, system complexity,
and many other factors preclude direct human

oversight of many functions. In fact, almost all
spacecraft require a level of autonomy, if only as a
backup when communications with humans fail
for some reason.

Until recently, the notion of autonomy has
always been restricted to predefined explicit behav-
iors and programs. The spacecraft or system has no
“understanding” of the situation or what the
desired outcome is—it simply executes the script
triggered by events. This restricted form of autono-
my is adequate for many satellites operating in pre-
dictable environments such that activity sequences
can be determined well in advance. However, it
breaks down under increasing uncertainty and
nondeterminism, such as when navigating on a
planetary surface or investigating unpredictable
and transient events.

Higher levels of autonomy and automation using
artificial intelligence technologies enable a wider
variety of more capable missions and enable
humans to focus on those tasks for which they are
better suited. Indeed, in many situations autonomy
is far more than just a convenience; it is critical to
the success of the mission. Deep space exploration
in particular requires more autonomy, as commu-
nications with ground mission operators are suffi-
ciently infrequent that the spacecraft must react to
opportunities and hazards without immediate
human oversight.

This article provides an overview of the nature
and role of autonomy for space exploration, with a
bias in focus towards describing the relevance of AI
technologies. First, we explore the range of
autonomous behavior that is relevant and useful in
space exploration. Second, we illustrate the range
of possible behaviors by presenting four case stud-
ies in space-exploration systems, each differing
from the others in the degree of autonomy exem-

Articles

WINTER 2007 27Copyright © 2007, American Association for Artificial Intelligence. All rights reserved. ISSN 0738-4602

Autonomy in Space
Current Capabilities and

Future Challenges

Ari Jónsson, Robert A. Morris, and Liam Pedersen

AI Magazine Volume 28 Number 4 (2007) (© AAAI)

plified. Third, three core requirements are
defined for autonomous space systems. Fourth,
we describe architectures for integrating capa-
bilities into an autonomous system. Finally, we
discuss the challenges that are faced currently
in developing and deploying autonomy tech-
nologies for space.

Autonomy Applications
The range of potential applications of autono-
my for space operations is vast. We can distin-
guish broadly between three kinds of opera-
tions in space: predictable, unpredictable, and
real-time response. Many flight operations
such as navigation and maneuvering in space,
orbiting a celestial body, observations, com-
munication, and safekeeping activities are
highly predictable and can be planned well in
advance. A need for automated planning and
scheduling is driven by the complexity of oper-
ations subject to tight resource constraints. In
contrast, surface operations such as long- and
short-range traverse, sensing, approaching an
object of interest to place tools in contact with
it, drilling, coring, sampling, assembly of struc-
tures, and many others are characterized by a
high degree of uncertainty resulting from the

interaction with the environment. For exam-
ple, wheel slippage can cause a rover to drift off
course or consume more energy during a tra-
verse. Operations in these environments with-
out autonomy to monitor progress and adjust
behavior accordingly would be greatly restrict-
ed, particularly as communication delays to
Earth are increased. Finally, operations such as
entry, descent, and landing (EDL), automated
spacecraft docking, or navigating a blimp on
Titan require a real-time response from the
vehicle that can preclude any interaction with
mission control.

We can also distinguish between autonomy
for unmanned missions from autonomy in
support of human space missions. Research has
been conducted in each of these application
areas to determine the potential role and ben-
efits of autonomy.

It is impossible in the space allotted here to
offer a complete survey of work related to the
development of autonomous space systems.
Instead we focus broadly on the kinds of AI-
based software technology that contribute to
the development of capabilities for autonomy.
We choose to categorize these under intelligent
sensing, planning and execution, fault protec-
tion and health management, and distributed
decision making.

Intelligent Sensing
Constrained downlink resources and long
latencies impose severe limits on spacecraft
operations, reducing performance and directly
limiting science return. Many instruments,
particularly imagers, are capable of acquiring
much more data that can be downlinked or
even stored on board the spacecraft for later
download. For example, the THEMIS instru-
ment on Mars Odyssey is turned on 100 per-
cent of the time but only collects data in the
range of 5–10 percent of the time due to down-
link limitations (Wagstaff et al. 2005).

Interpreting rich sensor data and responding
to it in a timely manner are essential for a Mars
rover navigating around obstacles (figure 1) or
a distant spacecraft observing transient phe-
nomena that require immediate follow-up
measurements, such as volcanic eruptions on
Io, meteorological activity on Mars (figure 2),
or the formation of cometary jets.

Intelligent sensing can be broadly defined as
the ability to infer system state or a model (or
part thereof) of the environment from envi-
ronmental sensor data. Computer vision has
proven to be particularly relevant for intelli-
gent sensing because of the prevalence of cam-
eras on most spacecraft and surface explorers
(Jalobeanu, Kuehnel, and Stutz 2004). Activi-

Articles

28 AI MAGAZINE

Figure 1. MER’s GESTALT Obstacle Avoidance System Relied on
Three-Dimensional Surface Models Computed from Stereo Images.

Detectable hazards include rocks, high slopes, and trenches (Maimone, Leger, and
Biesiadecki 2007).

ties of interest include tracking landmarks to
infer vehicle motion or guide it to a target (Ped-
ersen et al. 2003), detecting obstacles, and gen-
erating three-dimensional terrain models from
multiple images of a landscape (note that
active sensing systems such as laser range find-
ers can do this directly and with less computa-
tion but in the past have been too massive and
power hungry to deploy on rovers).

The Mars exploration rovers (MER) made sig-
nificant use of computer vision both for land-
ing and for navigation. During terminal
descent, the descent image motion estimation
subsystem (DIMES) (Chang, Johnson, and
Matthies 2005) used images of the Martian sur-
face from a downward-facing camera to esti-
mate the horizontal velocity of the vehicle.
This in combination with radar altimetry and
the attitude measurements yielded a transverse
impulse rocket subsystem (TIRS) firing solution
to reduce vehicle velocity at landing to within
the airbag design threshold of 24 meters per
second, in spite of high winds that would have
otherwise prevented landing at that site.

The MER mission has conclusively demon-
strated the importance of surface mobility for
accomplishing science objectives. The vehicles
drove up to rocks within view to get contact
measurements from targets that would other-
wise have been beyond manipulator range.
Over a longer time, the vehicles explored more
interesting terrain and surveyed larger areas.
For example, volcanic rocks of uniform type
were first found at the Spirit landing site in
Gusev Crater, without much to indicate a
watery past. Pushing hard, the vehicles were
able to drive several kilometers to the Colum-
bia Hills with a greater diversity of rocks that
showed clear evidence of an aqueous history.

One key to MER surface mobility was stereo-
vision-based obstacle avoidance and motion
estimation (Cheng, Maimone, and Matthies
2006), enabling it to traverse long distances,
escape from craters with slippery slopes, and
shorten the time required to approach science
targets for in situ measurements.

The MER examples mentioned illustrate sit-
uations where autonomous, intelligent sensing
is essential to mission success because the long
communications delay (20–40 minutes each
way) precludes direct teleoperation from Earth.
However, even when signal latency is not the
limiting factor, the sheer volume of sensor data
makes it hard for mission controllers and sci-
ence teams to identify and respond to interest-
ing events in a timely fashion without auto-
mated assistance. This ranges from the ASE
software (Chien et al. 2005a) on the Earth
Observing 1 (EO-1) satellite (figure 3) for

autonomously detecting and responding to
interesting events on Earth, to ground-based
tools for visualizing rich datasets (Edwards et
al. 2005), content-based image retrieval Meyer
2005), automatic crater counting, and rock fre-
quency estimation algorithms.

Planning and Execution
Planning is the process of decomposing high-
level goals into a sequence of activities that sat-
isfy temporal, resource, and other constraints.
The plans generated for space exploration typ-
ically must manage the uncertainty inherent in
operating in space. This uncertainty manifests
itself in how long it takes to perform an activi-
ty, and in how much resource (power, memo-
ry, CPU time) is required to perform tasks. For
example, the time it takes to drive from one
location to another depends on wheel slippage
and path length, which in turn depend on the
characteristics of the soil and terrain, and the
presence of (unseen) obstacles.

Traditionally, mission planning is performed
by a myriad of ground resources that generate
a relatively inflexible sequence of commands
that is uplinked to the spacecraft. Often, this
sequence must be highly conservative to
ensure that the plan can be executed. While
planning and scheduling systems are being
deployed to support ground operations, sel-
dom have these systems been used in a closed-

Articles

WINTER 2007 29

Figure 2. Dust Devils on Mars, Observed by the MER Vehicles.

The 2006 MER software update includes algorithms (Castaño et al. 2007) to detect
these in low-resolution navigation images so that immediate high-resolution
images can be obtained with the PanCam imagers.

loop fashion to control an autonomous sys-
tem, with the notable exception of path and
motion planning (an exception is the EO-1 ASE
experiment [Chien et al. 2005b]). Furthermore,
the existing technology is limited in its ability
to generate a flexible sequence that allows for
a variety of execution paths based upon an
evaluation of the current state of the environ-
ment at the time of execution.

Path and motion planning is a special case
of mission planning that must often be per-
formed on board the vehicle because of fre-
quent state updates that must be accommodat-
ed in real time (Stentz 1995). These include
vehicle position updates, detection of new
obstacles, and reaction forces encountered by
vehicle wheels or manipulator device (Tomp-
kins, Stentz, and Whittaker 2004).

An execution system is responsible for dis-
patching a sequence of commands while mon-
itoring and responding to failures within the
system. Given a specification of the sequence
of tasks to be performed, an executive is
responsible for reactively selecting the next

action to take based upon the sensory inputs
available at that time. The key challenge to be
addressed in building execution systems is pro-
viding a guaranteed real-time response given a
flexible sequence of tasks while still reasoning
about the systemwide interactions and the
future ramifications of an action (Williams and
Nayak 1996).

Fault Protection and
Health Management
The fault protection and health management
decision-making capability addresses the need
for detecting, diagnosing, and reacting to
events occurring inside a system, given streams
of observations, through the use of models
about the behavior of the system. The models
predict expected future states of the system,
and comparisons between predictions and
observations allow inferences about the sys-
tem’s state.

Currently, health status information for
spacecraft is often obtained through limit
thresholds and simple algorithms that reason
locally about an individual component. For
autonomous health self-management, the inte-
gration of lower-level precise models with sys-
tem-level models is required to determine the
global state of the device based upon an evalu-
ation of current systemwide interactions, as
well as to provide automated fault localization.
This capability will limit the need for redun-
dant sensors and will increase the overall
robustness of the vehicle. Furthermore, the sys-
tem will be able to perform many of these tasks
within the real-time execution loop, thus per-
mitting the system to respond quickly based on
a true identification of the source of the anom-
aly as opposed to limited local information
(Robertson, Effinger, and Williams 2006).

Traditional AI-based diagnosis systems typi-
cally use a combination of a declarative repre-
sentation of the physical system and monitors
to translate continuous-valued sensors into dis-
crete-valued variables. These systems work rea-
sonably well for diagnosing spacecraft navigat-
ing through space, in which the state of the
environment does not typically change dra-
matically over time. By contrast, rover diagno-
sis depends significantly on environmental
interactions and potentially noisy data. Conse-
quently, the diagnostic system must be smart
enough to distinguish between changes caused
by faulty components from transient state
changes caused by the environment. The inti-
mate coupling of physical device with envi-
ronment puts a strain on the ability of deliber-
ative diagnostic systems to perform well in this
domain. A sensor reading may be normal in

Articles

30 AI MAGAZINE

Figure 3. Earth Observing 1 Satellite EO-1.

On-board software combines machine learning and pattern recognition to iden-
tify terrestrial regions of interest or recent changes such as flooding, ice melt, or
volcanic eruptions. On-board decision making allows retargeting the imager to
these regions during subsequent orbital passes.

some contexts and indicate a fault in others;
this tends to push the decision making towards
the monitors, who must be sophisticated
enough to interpret the environmental context
producing the observation when translating
the continuous valued data into discrete val-
ues. In other words, with rovers, diagnosis
becomes more of an intelligent sensing prob-
lem.

An alternative approach is to have a hybrid
diagnostic system, one that can reason directly
with the continuous values received from sen-
sors, as well as perform discrete mode identifi-
cation (Hofbaur and Williams 2004). The sys-
tem model used by a hybrid diagnostic system
consists of three parts: a set of discrete modes
and a transition function that describes how
the system changes from one mode to another;
a set of equations that, for each mode,
describes the dynamics of the system in terms
of the evolution of the continuous state vari-
ables; and an observation function that defines
the likelihood of an observation given the
mode and the values of the state variables. The
diagnosis problem becomes that of identifying
the mode of the system, as well as the values of
all the state variables (Hofbaur and Williams
2002).

Distributed Decision Making
Within the past few years NASA has formulat-
ed mission scenarios that involve scientific
assets distributed across multiple spacecraft.
Examples include the terrestrial planet finder
(TPF), the laser interferometry space antenna
(LISA), and the TechSat21. The TPF consists of
an ultraprecise formation of four collector and
one combiner spacecrafts that combine the
high sensitivity of space telescopes with
sharply detailed pictures from an interferome-
ter. With LISA, gravitational waves from galac-
tic and extragalactic sources will be observed
using three spacecraft flying 5 million kilome-
ters apart in the shape of an equilateral trian-
gle. The TechSat21 Air Force Research Labora-
tory (AFRL)–led microsatellite program would
validate a distributed sparse aperture radar con-
cept; understand formation flying, fine posi-
tion sensing/control, and a number of micro -
satellite technologies; measure ionospheric
small-scale structure in situ and propagation;
and demonstrate lightweight microsat hard-
ware. In addition to distributed spacecraft,
NASA plans surface exploration missions,
which require mixed teams of humans and
robots.

Autonomous capabilities for coordination
address the need for cooperation between inde-
pendent autonomous agents to achieve a com-

mon goal. Effective cooperation requires
resources to be shared across systems and the
assignment of roles and responsibilities to min-
imize the coupling between agents while still
ensuring coordination in the attempt to satisfy
the higher-level mission goals. Distributed
decision making is critical for missions such as
a robotic colony on Mars, deployment of a fleet
of sensing devices orbiting Earth, or within an
armada of cooperating deep space probes.

Teams of specialized robots offer the poten-
tial for accomplishing complex tasks better and
more reliably than do independent, general-
purpose decision makers. Among other things,
teams have the capability to work in parallel,
combine capabilities to achieve new compe-
tence, and monitor and repair one another.
This advantage is especially important for long-
term missions, where single points of failure
can be disastrous. The challenge in achieving
the benefits of collaborative teams of robots,
however, resides in the ability to coordinate
their activities effectively.

Building from research in autonomous robot
architectures, multirobot coordination, plan-

Articles

WINTER 2007 31

Figure 4. Reasoning for Fault
Protection on the K9 Rover.

Wheel 1 Jammed

Accel.
Level

Idle

Accel. Uphill

ning and scheduling, task execution, distrib-
uted control, probabilistic reasoning, machine
learning, and monitoring and fault diagnosis,
the problems of heterogeneous coordination
are addressed on several levels.

First is coordination at the planning and task
allocation level (Chen and Decker 2004,
Clement and Barrett 2001). This involves
building an overall architecture for dynamic
team formation and includes distributed or
centralized approaches to planning of team
activities, as well as methods for agents to learn
to better estimate their own capabilities, and
those of others, and to better negotiate task
assignments.

Second is coordination at the execution and
control level, which includes developing tech-
niques for independent, heterogeneous agents
to explicitly coordinate with one another to
achieve tasks. Examples include synchronized
localization (Fox et al. 1999) and coordinated
mobility (for example, to enable formation fly-

ing or coordinated assembly of a remote out-
post).

Third is coordination at the health-manage-
ment level (Tumer, Uckun, and Agogino 2005),
which consists of developing techniques that
enable robots to monitor one another’s
progress and to assist each other in diagnosis
and repair.

Capabilities in each of these categories com-
bine to create autonomous spacecraft. In the
“What Makes a System Autonomous?” section,
we will describe principles for organizing these
capabilities into an integrated system. In the
next section we provide examples of operating
flight systems that differ in the degree to which
these autonomous capabilities are exhibited.

Case Studies in
Space Flight Systems

In this section, four space missions, past and
present, are examined. For each mission, we

Articles

32 AI MAGAZINE

Figure 5. Terrestrial Planet Finder Observatories Will Study All Aspects of Planets Outside Our Solar System.

describe and compare the mission objectives,
mission operations, spacecraft subsystems, and
strategies for onboard control.

Cassini-Huygens
Cassini-Huygens is the first mission to explore
Saturn’s system of rings and moons from orbit.
After a seven-year voyage that includes four
gravity-assist maneuvers, Cassini entered Sat-
urn’s orbit in June 2004. A four-year mission
includes more than 70 orbits around the ringed
planet and its moons. Pointing its various
instruments at carefully calculated scientific
targets, Cassini collects detailed data on Saturn.
The European Space Agency’s Huygens probe
dove into Titan’s atmosphere in January 2005.1

The 12 science instruments on board the Cassi-
ni spacecraft carry out sophisticated scientific
studies of Saturn, from acquiring data in mul-
tiple regions of the electromagnetic spectrum,
to studying dust particles, to characterizing Sat-
urn’s plasma environment and magnetos-
phere. The instruments gather data for 27 sci-
ence campaigns, providing scientists with
enormous amounts of information.

Mission control for Cassini-Huygens is coor-
dinated in the form of a human operator,
called the Ace, who monitors the ground data
system and the spacecraft during the periods
when the Deep Space Network (DSN) is track-
ing the spacecraft. Dozens of engineers and sci-
entists communicate with the Ace by voice-
net, telephone, or e-mail while checking
system status or uplinking command
sequences to the spacecraft. The Ace ensures
that all the spacecraft’s data are acquired,
checked, stored, and distributed. The Ace is
also responsible for correcting problems that
sometimes occur with the hundreds of com-
puters, programs, data files, and processes that
enable the flight team to communicate with
the Cassini spacecraft. Workstations display the
spacecraft’s health and safety, as well as the
real-time status of DSN antennas and systems
that link together to provide two-way commu-
nications with the spacecraft.

From a command and control perspective,
Cassini-Huygens illustrates a fairly traditional
spacecraft and mission design. Although com-
manding and decision making for Cassini-Huy-
gens are virtually completely done by humans,
a limited amount of self-commanding is con-
ducted on board. In particular, the spacecraft
contains on-board fault protection software,
which is able autonomously to place the space-
craft in a safe, stable state and able to receive
commands should an equipment failure occur.
The software also responds automatically to
faults requiring immediate action.

The spacecraft also conducts autonomous
attitude determination and control in the atti-
tude and articulation control subsystem
(AACS), using three inertial reference units
(IRUs) and a star tracker. Reaction wheel assem-
blies (RWAs) are one of two systems used to
provide pointing control of the spacecraft in
flight (with the thrusters of the propulsion
module subsystem as the other). The reaction
wheel assemblies contain electrically powered
wheels. They are mounted along three orthog-
onal axes aboard the spacecraft.

Mars Exploration Rovers
The twin Spirit and Opportunity Mars explo-
ration rovers were successfully landed on Mars
in January 2004. The goal of the mission was to
discover evidence of past water at Gusev Crater
and Meridiani Planum. Each rover is equipped
with a multifilter and stereo camera pairs and a
thermal emission spectrometer and in situ
measurements (with a five degree of freedom
arm for deploying a rock abrasion tool). The
rovers also consist of a microscopic imager, an
alpha particle X-ray spectrometer, and a Moss-
bauer spectrometer (Biesiadecki, Leger, and
Maimone 2005).

The MER vehicles are typically commanded
once per Martian solar day (sol) using MAP-
GEN, an automated constraint-based planning
system (Ai-Chang et al. 2003). A sequence of
commands sent in the morning specifies the
sol’s activities: what data to collect, how to
position the robotic arm, and where to drive.
The uplinked commands are selected based on
what is known—and what is unknown—about

Articles

WINTER 2007 33

Figure 6. TechSat 21 Uses Clusters of Microsatellites That Operate
Cooperatively to Perform the Function of a Larger, Single Satellite.

the terrain ahead. At the end of each sol, the
rovers send back the images and data used by
ground operators to plan the next sol’s activi-
ties.

There are two basic driving modes on the
MER vehicles. Traverses cover long distances;
approaches are short-term drives to a specific
target, like an interesting rock. There is also a
fine positioning mode, which involves placing
a robotic arm in close proximity to the desired
target. The rovers have autonomous navigation
capabilities. They can be commanded by spec-
ifying a waypoint. The rovers will generate a
path and autonomously traverse to the way-
point. The rovers have onboard hazard detec-
tion using stereo vision pairs taken by any of
the three types of stereo camera pairs found on
MER vehicles to locate traverse hazards and
avoid them. They have two kinds of obstacle
avoidance: reactive and proactive. In reactive
obstacle avoidance, real-time interrupts check
for orientations that may put the rover at risk.
The rovers can also do terrain analysis proac-
tively to evaluate future risk.

In addition to autonomous navigation, the
rovers can use visual odometry to gauge vehi-
cle motion accurately. This capability has
proved essential for egressing steep crater
slopes where significant wheel slippage makes
traditional dead-reckoning-based navigation

impractical. In addition, this capability has
been demonstrated to be effective in cases
where precision positioning of an instrument
on a target is required (Biesiadecki, Leger, and
Maimone 2005).

It should be noted that recently a number of
autonomy enhancements have been developed
and demonstrated on the MER vehicles. Among
them are the use of D* path planning to assist in
hazard avoidance,2 the use of visual target track-
ing for more accurate target approach,3 and
decision making for on-board science.4

Remote Agent
Remote agent (RA) is an AI software system for
spacecraft goal-based commanding, robust exe-
cution, and fault recovery. The remote agent
experiment (RAX) on Deep Space 1 (DS1)
demonstrated RA capabilities in May 1999. RA
allowed ground operators to command the sys-
tem at the goal level rather than through issu-
ing individual commands and by the automa-
tion of flexible failure detection, isolation, and
recovery (flexible in contrast, for example, to
Cassini-Hugyen’s traditional rigid safing1

response to all anomolies).
During RAX, RA controlled a number of DS1

subsystems, including the camera for use in
autonomous navigation, the solar electric
propulsion (SEP) subsystem for trajectory

Articles

34 AI MAGAZINE

Figure 7. Artist’s Conception of a Team of Rovers Performing an Assembly Task on Mars.

adjustment, the attitude control sys-
tem for turns and attitude hold, the
navigation system for determining
how the actual trajectory is deviating
from the reference trajectory and the
SEP thrusting profile required to stay
on the reference trajectory, and the
power amplification and switching
module (PASM), for use in demon-
strating fault protection capabilities
(Jónsson et al. 2000).

RA is one of the original examples
of a layered autonomy architecture
(more on this later). The primary com-
ponents of RA are a planner/scheduler,
a reactive plan execution system, a
diagnosis and repair system (MIR)
composed of mode identifier and
mode recovery components, and a
mission manager that selects goals for
each planning horizon (figure 8). A
RAX manager provided a messaging
conduit between RA and the real-time
execution flight software (Bernard et
al. 1998). RA issues commands to the
flight software to modify the system
state and receives data from DS1
through a system of monitors that dis-
cretize sensor values. First, the mission
manager selects goals for the next
commanding horizon (typically, sev-
eral days in length) and sends them to
the planner/scheduler, which then
plans activities for the accomplish-
ment of the goals.

RA elements relied on relatively
abstract declarative models to generate
plans from goal commands, synchro-
nize the parallel execution of plan
activities, and respond to faults. Models
of the ion propulsion system, the atti-
tude control system, the miniature
integrated camera and spectrometer
(MICAS), power, reaction control sys-
tem, the data system, sensors, and the
RA itself were developed (Bernard et al.
1998).

The planner/scheduler is composed
of a heuristic chronological backtrack-
ing search engine managing a tempo-
ral database. The planner/scheduler
continuously expands partial plans
into complete plans by posting con-
straints derived either from spacecraft
models or from planning goals. The
executive is a reactive, goal-oriented
control system, managing the execu-
tion of plans requested from the plan-
ner/scheduler, as well as system-level

fault protection. A goal is a state of the
system being controlled that must be
maintained for a period of time, such
as keeping a device on for a requested
duration. Exec coordinates the execu-
tion of multiple goals simultaneously,
by transforming goals into command
procedures.

MIR performs model-based diagno-
sis using declarative spacecraft compo-
nent models to determine whether the
current state of each component
(mode) is consistent with the current
observed sensor values. If failures
occur, MIR uses the same model to
find a repair or workaround procedure
that allows the current plan to contin-
ue to execute.

Because of the departure of RA from
traditional flight software, the integra-
tion of RA with the DS1 flight software
offered unique challenges, among
which was the fact that RA was imple-
mented in Lisp, whereas the flight soft-
ware was implemented in C or other
lower-level languages. Interfaces
between RA and flight code needed to
be designed and implemented. In addi-
tion, memory and CPU fraction con-
straints required a thorough analysis
and transduction (removal of unneed-
ed components of the development
environment from the final image).

RAX operated DS1 for several days.
Scenarios that were tested included
executing an IPS thrust arc, acquiring
optical navigation images, and
responding to several simulated
faults. RA successfully accomplished
all of its validation objectives during
the experiment.

Autonomous Science
Experiment on EO-1
The autonomous science experiment
(ASE) on NASA’s EO-1 Earth observing
spacecraft demonstrates autonomous
control of science activity. Earth
Observing 1 is the first satellite in
NASA’s new millennium program
Earth observing series, launched on
November 21, 2000.The core autono-
my capabilities of ASE are on-board
science analysis, replanning, and
robust execution. A later extension to
the experiment has included the
incorporation of model-based diag-
nostic capabilities (Hayden, Sweet,
and Christa 2004).

Articles

WINTER 2007 35

Image data acquired from the Hype-
rion instrument on EO-1 are analyzed
on board to detect the occurrence of
something with science value. Science
data are downlinked only when either
change is detected from previous
observations, or when events of inter-
est such as volcanic eruptions, flood-
ing, ice breakup, and presence of cloud
cover are detected. The results of
analysis also provide inputs to on-
board decision-making algorithms
that then update the current observa-
tion plan, derived initially from goals
uplinked from the ground, to capture
high-value science events. This new
observation plan is executed by a goal
and task execution system, able to
adjust the plan to succeed despite run-
time anomalies and uncertainties
(Chien et al. 2005a).

The autonomy software is organized
into a three-layer architecture. At the
highest level of abstraction, the con-
tinuous activity scheduling planning
execution and replanning (CASPER)
system is responsible for mission plan-
ning. CASPER uses resource and space-
craft constraint models to generate
feasible schedules of science activities.
Activities are sent to the spacecraft
command language (SCL) execution
system, which generates detailed
sequence commands. At the bottom
tier, the EO-1 flight software provides
low-level control of the spacecraft and
provides a layer of independent fault
protection. The science analysis soft-
ware is scheduled by CASPER and exe-
cuted by SCL in batch mode. The
results from the science analysis pro-
vide new observation requests for inte-
gration into the mission plan.

The ASE software has flown in a
series of tests beginning in March
2003. Fully autonomous science oper-
ations were first demonstrated in Jan-
uary 2004. As of June 2007, ASE soft-
ware had been used to successfully
acquire more than 10,000 science
images and has flown for years con-
tinuously. The value added to NASA
has already reached millions of dol-
lars, and it is now the primary mission
operations software for EO-1. The
increase in science return has been
documented to be over 100 times by
the ASE science team.

What Makes a
System Autonomous?

The preceding examples of spacecraft and
methods to control them serve to illustrate the
range of behaviors that could be made
autonomous through the application of tech-
nologies related to intelligent sensing, plan-
ning and execution, and health management.
In this section, we address the broader question
of how to classify and characterize
autonomous behavior.

Specifically, we propose three necessary con-
ditions for autonomy:

1. Autonomy describes a range of behaviors
associated with agents, systems that can sense
the world around them as well as their own
state, can make decisions about what to do, and
can carry out their decisions through their own
action.

Autonomy is associated with traditional con-
cepts of agency, the ability of a system to sense,
think, and act. Furthermore, autonomy is
about control authority, the range of capabili-
ties that a system can exhibit. The chess-play-
ing program Deep Blue is not an autonomous
system by this definition, even if it exhibits
intelligence in chess playing. Its range of
behaviors is limited to moves of a chess game,

and it does not exhibit the necessary condi-
tions for agency.

2. An autonomous system can be controlled by
commanding it to achieve a set of goals; the
system itself transforms the goals into
sequences of actions that accomplish each goal.

A teleoperated robot can exhibit a range of
goal-directed behaviors, but it is not
autonomous because it is command driven
rather than goal driven. It should be further
noted that goals can be specified at increasing
levels of abstraction. The goal “Find an inter-
esting rock” is more abstract than the goal
“Drive to location (x, y)”, which is in turn more
abstract than the command “Turn right 90
degrees.”

3. An autonomous system flexibly responds to
off-nominal situations by adjusting its activity
sequence to attain the high-level goals and
maintain system safety.

This condition refers to a system’s robustness
with respect to the environment within which
it is acting, that is, the envelope of conditions
under which it can accomplish its goals. This
condition ensures that a system that is goal-
directed but is susceptible to failure in accom-
plishing its goals due to unpredicted changes is
not considered autonomous. With respect to
the ability to remain safe in the presence of
anomalies, for example, the DS1 spacecraft
(Jónsson et al. 2000), with its capability to “fail
flexibly,” is more autonomous than the Cassi-
ni-Huygens spacecraft.

It follows that autonomy describes a set of
capabilities, not a set of technologies. For each
contributing capability to autonomy, there is a
range of technologies that have been proposed
and developed or applied to realize the capa-
bility. Second, humans are never out of the
loop when it comes to autonomous artifacts for
space. Although the evil autonomous system
HAL from 2001: A Space Odyssey can be imag-
ined, it is clearly not the intention to devise
space systems that are beyond the reach of
human control (although, to be fair to HAL, it
had been given high priority instructions to
keep the true mission secret from the crew. It
reasoned that killing them was the only
remaining option to accomplish this). Finally,
autonomy is not an all-or-nothing characteris-
tic of a system, but something that admits of
degree. Systems can be compared and ordered
with respect to the degree to which they satis-
fy each of the three autonomy criteria just
defined. The philosophical concern about
whether a rock or a thermostat is autonomous
can in this way be reduced to happy hour
entertainment (or, equivalently, to an academ-
ic philosophy journal paper).

Articles

36 AI MAGAZINE

Figure 8. Remote Agent Architecture

Planner

Executive

MIR

Remote
Agent

MI MR

System Software
(such as controllers)

Goals

Autonomous Systems
Architectures

Space-exploration systems that exhib-
it autonomy consist of software and
hardware integrations of the set of
capabilities described above. These
capabilities must be organized in an
effective manner in order to meet the
performance requirements of space
exploration. An autonomy system
architecture describes the structure
underlying this organization, as well
as a description of how the different
components communicate among
themselves and with the external
world (Coste-Maniere and Simmons
2000).

This section discusses general prin-
ciples underlying autonomy architec-
tures for space systems in more detail.
We will focus on three different facets
of an autonomy architecture: the lay-
ers of software that are typically built
on the underlying hardware, the
sense-think-act cycle that governs the
behavior of different elements, and
then the reasoning techniques that are
typically involved. We will then
briefly touch on distributed autonomy
architectures, an extension of the core
architectures to support interactions
among multiple spacecraft and sys-
tems.

Layered Architecture
Over the years, a consensus has been
reached that architectures for autono-
my should consist of a planning layer,
a task sequencing layer, and a reactive
layer (Nilsson, 1984; Alami et al. 1998).
These are also often referred to as delib-
erative, executive, and functional lay-
ers. The three layers can be distin-
guished in terms of their abstraction
from the hardware and their response-
time requirements. The response-time
limitations usually translate into limits
on the ability to deliberate and limits
on the time horizon being considered.
The functional layer has the fastest
response requirements, as it must keep
up with the hardware, and each com-
ponent typically considers only a sin-
gle task or subtask at a time. The exec-
utive layer manages a set of tasks at a
time, and needs only respond fast
enough to keep up with task activa-
tions and terminations (Verma et al.

2005). Finally, the deliberative layer
considers multiple tasks and multiple
options, taking impacts far into the
future into account. It need only
respond fast enough that it can provide
additional task sets, or plans, to the
executive when needed.

But the layers do not simply repre-
sent an increase in capabilities; there
are trade-offs. The functional layer has
access to detailed data from the hard-
ware and often performs complex
numerical calculations on those to
determine responses or provide data to
the layers above. The executive layer
usually has contingency handling and
control capabilities that are not in the
deliberative layer.

Sense, Think, Act
Each layer in an autonomy system per-
forms a variation of a sense-think-act
cycle. The overall autonomy system
then has an overall sense-act-think
cycle as well. Sensing involves getting
data from lower layers or the hardware
and mapping that to a representation
that the software can use. Thinking
involves considering the sensory data,
information about the spacecraft, and
desired objectives and then arriving at
a result about what should be done.
Finally, acting involves carrying out
the decisions reached in the think
cycle.

The reactive, or functional, layer
comprises a set of elementary actions
that perform specific tasks using a pre-
determined algorithm or perform pre-
determined calculations to provide
results to other components or layers.
The functional layer is thus a real-time
distributed system, usually imple-
mented in a modular fashion, inter-
acting with an environment through
raw data sensors. The thinking is lim-
ited to direct deterministic calcula-
tions, based on the sensor input, and
the acting is done with direct com-
manding of underlying hardware. For
example, a functional layer pressure
control action handles pump and
valve control to maintain a certain
pressure in a fuel system. It reads pres-
sure sensors and calculates how trends
should be mapped to valve and pump
control. A functional layer computa-
tion, which typically only involves
sensing, may monitor raw pressure

Articles

WINTER 2007 37

indications and provide an indication
of over or under pressure to higher-
level layers.

The executive layer manages a set of
tasks. Its primary responsibilities are to
monitor the systems and the progress
of tasks, through its sensing abilities,
determine what tasks need to be acti-
vated, interrupted, resumed, or termi-
nated; and then carry out that task
control. Acting as a layer between the
reactive and deliberate layers, the
executive is often perceived as being
very simple. But most deliberative lay-
ers provide only abstract decisions and
plans, leaving the executive layer to
fill in those plans and to respond
when the decisions or plans do not
lead to the expected results. For exam-
ple, when executing a plan involving a
fuel system, the executive will moni-
tor the plan and the system, deter-
mine when to initiate an action such
as maintaining a given pressure, and
then send those instructions to the
functional layer. But it will then con-
tinue to monitor the execution, and
respond if unexpected issues such as
over- or underpressure arise.

Finally, the deliberative layer is
responsible for making the high-level
decisions and thus is often the focus of
AI research in these areas. Like other
layers, the deliberative layer has its
own sense-think-act cycle. A delibera-
tive layer comes in many forms, and
the wide range of capabilities and
techniques that have been developed
is much too large to cover here. There-
fore, we will focus on the commonly
used combination of state identifica-
tion and decision making as the build-
ing blocks for a deliberative layer. State
identification is often referred to as
state estimation, diagnosis, mode
identification, or even systems health
management. The decision making
invariably involves some sort of plan-
ning, but this capability can vary
greatly, and in some cases the decision
making is done by a collection of plan-
ners. These planners can differ in
terms of reaction times, as some are
highly reactive while others consider
very long-term goals, as well as in the
level of detail they consider, whether
they consider contingencies, and so
forth.

State identification modules read

Finally, space exploration involves
great distances, which in almost all
cases eliminate any possibility of phys-
ical access for repairs or adjustments;
almost any mistake or failure can lead
to an unrecoverable situation.

The high cost and high risk in -
volved in spacecraft operations drive a
desire to achieve as much as possible
during a given mission. This makes
performance a very important factor
in spacecraft operations. Autonomy
technology has clear benefits in these
three areas; risk, cost, and perform-
ance.

A space-exploration mission invari-
ably progresses through four phases
(Larson and Wertz 1999): The first is
an initial study phase, resulting in a
broad definition of the mission. Next,
comes a detailed development phase,
which results in a detailed definition
of the mission. The third phase is a
production and deployment phase,
from construction of the ground and
flight hardware and software to
launch. Finally, there is the operations
phase, the day-to-day operation and
maintenance of the space system after
launch until de-orbit or recovery of
spacecraft. The benefits discussed here
apply to many of the phases. Howev-
er, in order to limit the scope of this
article, we focus primarily on the mis-
sion operations phase.

Risk Reduction
Space-exploration safety is typically
addressed by a combination of design
and operational decisions. Spacecraft
hardware is designed to handle likely
problems or environmental factors
and is often made redundant. Howev-
er, these designs must be traded off
against factors such as cost, increased
mass, and possibly increased risk, due
to the increased complexity. The
design of on-board software also plays
a key role, providing capabilities for
responding to fault situations. In most
cases, these capabilities are limited to
identification of faults and simple
responses that either abort specific
activities or put the spacecraft into a
safe state and await instructions.

In operational terms, safety has
almost exclusively been completely in
the hands of human operators. These
operators digest and analyze telemetry

may occur in the context of remote
sensing (Morris et al. 2005) or con-
struction tasks, such as building a per-
manent outpost on the moon or Mars
(Larson and Wertz 1999). Further-
more, the agents being coordinated
may include a mixture of human and
robotic agents.

The goal in developing autonomy
architectures for distributed systems is
to enable collective autonomy; that is,
the collective as a whole should exhib-
it a range of robust goal-directed behav-
iors. This implies, in addition to the
capabilities discussed earlier for single-
agent autonomy, the following: (1)
Models to support coordinated activity,
including information sharing, com-
munication protocols, and so on; (2)
Coordinated mission planning, poten-
tially including the ability to form
teams to accomplish a mission goal
that requires coordinated actions and
to generate plans that can be executed
effectively by a team of agents; (3)
Robust coordinated execution, includ-
ing timely communication of state
information among team members,
and adapting to unexpected events.

Benefits of Autonomy
Space exploration is by its very nature
an expensive and risky endeavor. The
reason for the high expense may need
no explanation, but it is worth noting
that it goes up rapidly with increased
mass and increased distance. The costs
involved can typically be separated
into the expense of the spacecraft sys-
tems development, the transportation
(launch) costs, and the operations
costs. The addition of crew members
increases costs by orders of magnitude
because of lower risk tolerance, signif-
icantly greater payload mass, and need
to return them safely.

The risk stems from a number of
factors. The environment is hostile
and unforgiving, which requires
designers and operators to guard
against dangers and factors that are
not found on Earth. Spacecraft are also
complex machines that are in most
cases designed and manufactured in
very small numbers, often as a single
copy; this reduces the benefit of les-
sons learned and requires unique
expertise for design and operations.

Articles

38 AI MAGAZINE

sensor data, which can be raw output
from hardware, calculated results from
functional layer modules, or even
summaries from the executive layer.
From this information, they deter-
mine the most likely state of the sys-
tem. For example, when diagnosing
the fuel system, a model-based diag-
nosis system will map sense values to
variables in a model and then reason
to derive what states, for example,
pump failures, leaks, and so on, match
the observed data.

Planning modules read current state
information from lower-level layers
and from state-identification software.
They also have specifications of
desired goals or objectives that drive
the decision making, which involves
finding ways to achieve desired goals,
given the current state and the limita-
tions of the system. For example, a
planner might look at a state where a
pump has failed and then build a plan
that achieves the desired trajectory
maneuvers in that state.

The layering architecture and the
multiple sense-think-act loops within
the layers are designed to provide an
overall sense-think-act loop that con-
trols the underlying system. The sens-
ing combines low-level calculations,
methods to abstract and summarize
data, tracking of plan execution
progress, and desired objectives. The
thinking resides primarily with the
deliberative layer, which uses this
information to determine what the
software should be doing. Finally, the
acting is handled by the executive and
reactive layers, turning the high-level
decisions into reality.

Distributed Autonomy
An autonomy architecture provides
constraints on the organization, inte-
gration, and coordination of a set of
components of a single goal-directed
system. The same principles underly-
ing autonomy architectures can be
generalized to enable the coordination
of distributed systems (Simmons et al.
2002). Coordination of distributed
systems differs from the coordination
of the components of a single system
by virtue of the fact that the compo-
nents of a distributed system may
themselves be goal directed. In space
applications, distributed coordination

data from the spacecraft, determine
the state of the spacecraft, decide what
needs to be done, and then generate
the exact sequences of commands that
accomplish their decisions. In this
process, flight rules, cross-checking
processes, detailed reports, and other
safeguards are used to document deci-
sions and avoid human errors and
mistakes.

There are three key areas where this
approach can be improved. One is
that it is fairly costly in terms of man-
power and expertise needed for opera-
tions. We discuss that aspect here
below. A second is that it limits the
range and level of detail of fault types
that can be handled properly. Finally,
it severely restricts the possible on-
board responses in the face of faults.

Current spacecraft fault identifica-
tion and response software is some of
the most impressive software ever
built. It is carefully designed to pro-
vide layers of monitoring capabilities,
fault determination, and responses.
However, it is written in terms of trig-
gers that kick off predetermined
sequences of actions. It does not
examine all the available data to rea-
son what the state is, and the condi-
tions for executing recovery actions
are predetermined and do not take
into account the complete situation in
terms of spacecraft state and other
ongoing activities. The fallout from
this is to limit the reasoning used to
identify faults and to severely restrict
possible responses. The software can-
not identify novel faults and is usual-
ly limited to responding by halting
operations and calling for help from
Earth.

In contrast to traditional software,
autonomy technology can provide a
much more flexible approach to on-
board fault identification and
response. Model-based state determi-
nation techniques use a model of the
spacecraft systems to determine possi-
ble states causing a given signature.
These can subsume the predetermined
triggers and add identification capa-
bilities for a great deal many more sit-
uations than the traditional software
can identify. In addition, considering
additional information when making
a fault determination will reduce the
risk of incorrectly identifying a fault,

Articles

WINTER 2007 39

something that can have disastrous
consequences.

When it comes to response to faults,
the autonomy technology can not
only take into account the full range
of possible fault states but can also
take into account what is ongoing or
planned and then formulate a safe
response based on all those factors.
Without the ability to combine all this
information, traditional triggered
responses will almost always have to
halt any and all operations; further-
more, the operations plans may be
limited so as to ensure that fault
responses won’t impact critical activi-
ties.

Cost Reduction
The high cost of space exploration is
primarily driven by high launch costs,
which to a large extent are driven by
payload mass. Together, these push
the need for very reliable and there-
fore expensive hardware and software.
Finally, spacecraft operations are
themselves expensive due to the large
number of personnel needed for the
duration of a mission. Autonomy
technology can do little to directly
address launch cost issues, but it can
have some impact on hardware and
software development cost, and it can
support a significant reduction in
operations costs.

Spacecraft hardware must operate in
conditions that are unlike most any
place on Earth. Radiation, temperature
extremes, lack of gravity, and dust, in
the case of surface spacecraft, have sig-
nificant impact on hardware and com-
puter systems. But spacecraft are also
made more robust to make up for the
lack of repair options. This is typically
done with redundancy in systems.
More adaptable software could, in
some cases, reduce the need for redun-
dancy.

Spacecraft flight software is com-
plex and unique. This invariably
entails high development and testing
costs for flight software. Reuse of test-
ed and certified software can reduce
the cost of flight software develop-
ment. Autonomy software, driven by
declarative models, lends itself very
well to reuse, and at the same time
provides a great deal of capability and
flexibility in how the software is used.

The most significant cost-saving
impact of autonomy software is in the
area of mission operations. Tradition-
ally, mission operations rely on raw
telemetry and data being sent to
ground staff, who then analyze it,
decide on a course of action, encode
that course of action in detailed
sequences of commands, and then
transmit those sequences to the space-
craft that executes them step by step.
Autonomy technology can help with
operations costs, both by reducing the
need for ground involvement and by
assisting ground staff with their tasks.

Onboard autonomy can significant-
ly reduce operations costs by off-load-
ing work done by ground staff. At one
extreme, a fully autonomous space-
craft requires virtually no interaction
with ground staff. However, there are
relatively few spacecraft for which that
is a feasible paradigm. In the case of
science mission spacecraft, operations
are invariably driven by scientists’
needs, which change based on the
data provided by the spacecraft. But
data can sometimes be analyzed on
board, and suitable response for addi-
tional data gathering can be formulat-
ed without having to involve ground
staff. The autonomous science experi-
ment software onboard EO-1 can
accept requests and insert them auto-
matically into the operations plan
(Chien et al. 2005a). Even when data
cannot be analyzed automatically,
autonomy software can be used to
allow scientists to specify the science
data products they desire and then
have the software achieve those while
maintaining safety. This reduces the
need for staff specialized in the space-
craft itself, as opposed to scientists. In
many spacecraft, engineers and space-
craft experts are essential for safe oper-
ations; nonetheless, autonomy soft-
ware can reduce the workload by
handling common and noncritical
housekeeping tasks and failure
responses.

Autonomy can also play a key role
in ground operations. Tools based on
planning and scheduling techniques
are being used to save time and cost in
operations. For example, the MAPGEN
tool (Jónsson et al. 2000) is used to
build activity plans for the Mars explo-
ration rovers. The tool can use plan-

ning and search methods to build
plans or suggest improvements, while
ensuring that flight rules and con-
straints are satisfied. The result is less
time spent building activity plans, or,
more room to explore options for
maximizing the value of the plan.

Performance Increase
One of the problems with traditional
spacecraft commanding is the time
that passes between an event being
observed by the spacecraft, be that a
fault or an interesting piece of science,
and the execution of a response. This
delay will often mean lost opportuni-
ties and wasted time. As noted above,
autonomy technology can reduce or
eliminate this delay. This may reduce
costs, but more importantly, it increas-
es the time spent on useful operations,
as opposed to downtime or waiting
time, enabling more to be done in the
same amount of time.

Onboard autonomy need not
involve fully automated closed-loop
decision making and execution. Com-
mand sequences have typically very
limited levels of complexity, so that
ground staff can identify the expected
spacecraft state at any point in time.
Complex plans, involving event-dri-
ven commanding, plan contingencies,
fault recoveries, conditional branches,
and loops, make this very difficult to
accomplish. To address this, autono-
my-based techniques can be used both
on the ground, to evaluate the safety
of such plans, and to watch over exe-
cution on board and ensure that flight
rules are not violated, resources are
not depleted, and so on.

At the other end of the extreme,
there are other kinds of missions
where communications with Earth
simply cannot keep pace with events
that occur on or around the spacecraft
and that require an immediate
response. In such circumstances, the
increased performance provided by
autonomy software is essential to
making the mission possible. For
example, an exploration under the
Europa ice cap will require fully
autonomous event-driven operations
from insertion to extraction.

It is worth noting that in some cas-
es, the impact of a given autonomy
application can be used to increase

safety, reduce cost, or improve effi-
ciency. For example, consider an appli-
cation that makes it possible to reduce
the time needed to build a sequence
for a spacecraft. The saved time can be
used to reduce manpower and thus
cost. The time can be used to explore
more options and increase efficiency
by getting more done. Finally, the
time can be spent analyzing contin-
gencies and fault scenarios for the
plan, thus improving safety.

Challenges
Over the last decade, there have been
notable successes and advances in
autonomy software for spacecraft
operations. Nonetheless, many chal-
lenges remain to be overcome in this
area. These challenges largely break
down into technical and cultural
issues.

It is worth noting that the very
capabilities offered by autonomy soft-
ware and some of the key motivations
for using those capabilities in space-
craft operations give rise to many of
the challenges faced. Cost and com-
plexity of space exploration lead to
risk aversion, which in turn leads to
favoring established approaches over
new technologies. The capability of
autonomy software to handle more
situations and perform more sophisti-
cated operations puts greater demands
on computational power and on
methods for ensuring correctness.

Technical Challenges
There are some notable technical chal-
lenges that remain in the develop-
ment of spacecraft autonomy soft-
ware. The core computational
challenges involve the capabilities of
the software, performance, and cor-
rectness assurances. But spacecraft
operations invariably involve humans
as well, which adds the requirement of
working effectively with humans.

The capabilities required for
autonomous spacecraft operations are
far from being as demanding as gener-
al artificial intelligence. Nonetheless,
the software must handle noisy sensor
data, an uncertain environment, lim-
ited resources, complex systems that
may not behave as specified, and
more. Planning with time and

Articles

40 AI MAGAZINE

resources, reasoning about uncertain-
ty, automated learning, computer
vision, and other AI techniques solve
some of these problems, but each has
limits, and often the techniques are
focused on a type of problem in isola-
tion.

Most AI techniques also require a
great deal of computational resources,
something that is typically scarce on
board spacecraft. On one hand, meth-
ods like current vision-based terrain
modeling methods are inherently
computationally expensive. On the
flipside, automated planning need not
be too expensive on average but has a
very heavy-tailed distribution, which
means that at times the computation-
al expense becomes very high.

The complexity of autonomy soft-
ware gives rise to a very difficult verifi-
cation problem. Whereas most tradi-
tional software can be verified against
calculable expected results, the results
of autonomy software depend on a
much larger input set and involve
methods that search through large sets
of options before making a choice.

Finally, most autonomy software
development has focused on tech-
niques that work in complete isola-
tion. This makes it challenging to
adapt the techniques to work in situa-
tions where humans are also involved.
Mixed-initiative planning techniques
are an example of solutions being
developed to tackle part of this chal-
lenge, but even in that area, a great
deal of work remains to be done.

Cultural Challenges
Cultural challenges arise from both
the autonomy software developer
community and the spacecraft mis-
sion community.

The spacecraft mission experts are
faced with daunting tasks: designing,
planning, and operating missions of
great complexity and expense. A great
deal of their efforts goes into manag-
ing and minimizing risks. And one
way to avoid perceived risk is to elim-
inate new technology and use only
proven approaches. This leaves many
technology developers frustrated, feel-
ing that the only way to have their
technology used in a mission is
already to have been part of a mission.

A closely related issue is that auton-

Articles

WINTER 2007 41

omy software is often seen as replacing
human decision making and even
pushing out human participation.
This does not exactly endear those
involved in spacecraft operations to
autonomy technology.

Autonomy software developers
have also been reluctant to fully
understand and acknowledge the
complexity of the domains they tack-
le, and few domains are as complex as
spacecraft operations. Many technolo-
gists focus on well-defined problem
classes that lend themselves to clear
and concise technical approaches. The
real world, and in particular, space-
craft operations, rarely maps into clear
and well-defined algorithmic prob-
lems. Nonetheless, technology devel-
opers are prone to request that space-
craft operators simply define their
problems as AI problems and then all
their problems are solved.

Finally, a shared cultural issue is that
of distrust of technology promises.
Spacecraft operators are skeptical of
claims made by autonomy technology
developers, in some cases, with good
reasons as autonomy technology devel-
opers often have more faith in their
technology than reality bears out.

Promising Future
These challenges are not insurmount-
able obstacles but point the way to
where technical developments are
needed. New ideas and “out of the
box” thinking have been and contin-
ue to be behind successful examples of
autonomy capabilities in space explo-
ration. There is promising work on
autonomy capabilities in almost all
fields of spacecraft operations, from
Earth-orbiting satellites to human
spaceflight and to very distant deep
space-exploration missions. Examples
of intelligent autonomy software
applications in spacecraft operations
will become more and more frequent
in the next decade, as these thorny
problems are tackled and the cultural
obstacles are overcome.

Acknowledgements
This article is a revised and expanded
version of a paper that appeared in the
Proceedings of the 2007 IEEE Aero-
space Conference, Big Sky, Montana
2007. Those portions that were previ-

ously published have been reused here
with permission from IEEE.

Notes
1. See saturn.jpl.nasa.gov.

2. See D* Integration into MER, www-
robotics.jpl. nasa.gov/tasks/showTask.cfm?
FuseAction=ShowTask&TaskID=45&tdaID=
2735.

3. See Visual Target Tracking in MER, www-
robotics.jpl.nasa.gov/tasks/showTask.cfm?
FuseAction=ShowTask&TaskID=18&tdaID=
2468.

4. See On Board Science on MER, www-
robotics.jpl. nasa.gov/applications/applica-
tionArea.cfm?App=13.

5. Spacecraft “safing” is a general purpose
safe-state response that is initiated by both
system and subsystem internal fault pro-
tection.

References
Ai-Chang, M.; Bresina, J.; Charest, L.; Jóns-
son, A.; Hsu, J.; Kanefsky, B.; Maldague, P.;
Morris, P.; Rajan, K.; and Yglesias, J. 2003.
MAPGEN: Mixed Initiative Planning and
Scheduling for the Mars 03 MER Mission.
Paper presented at the Seventh Interna-
tional Symposium on Artificial Intelli-
gence, Robotics, and Automation in Space
(iSAIRAS 2003), Nara, Japan, 19–23 May.

Alami, R.; Chatila, R.; Fleury, S.; Ghallab,
M.; and Ingrand, F. 1998. An Architecture
for Autonomy. Special Issue on Integrated
Architectures for Robot Control and Pro-
gramming, International Journal of Robotics
Research 17(4): 315–337.

Bernard, D. E.; Dorais, G. A.; Fry, C.; Gam-
ble, E. B., Jr.; Kanefsky, B.; Kurien, J.; Millar,
W.; Muscettola, N.; Nayak, P. P.; Pell, B.;
Rajan, K.; Rouquette, N.; Smith, B.; and
Williams, B. C. 1998. Design of the Remote
Agent Experiment for Spacecraft Autono-
my. In Proceedings, 1998 IEEE Aerospace Con-
ference. Piscataway, NJ: Institute of Electri-
cal and Electronics Engineers.

Biesiadecki, J.; Leger, C.; and Maimone, M.
2005. Tradeoffs Between Directed and
Autonomous Driving on the Mars Explo-
ration Rovers. Paper presented at the
Twelfth International Symposium of
Robotics Research, San Francisco. 12–15
October.

Castano, A.; Fukunaga, A.; Biesiadecki, J.;
Neakrase, L.; Whelley, P.; Greeley, R.; Lem-
mon, M., Castano, R.; and Chien, S. 2007.
Automatic Detection of Dust Devils and
Clouds at Mars. Machine Vision and Applica-
tions 18(3).

Chang, Y.; Johnson, A.; and Matthies, L.
2005. MER-DIMES: A Planetary Landing
Application of Computer Vision. In Pro-

ceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition (CVPR’05). Los Alamitos, CA:
IEEE Computer Society.

Chen, W., and Decker, K. S. 2004. Manag-
ing Multi-Agent Coordination, Planning,
and Scheduling. In Proceedings of the Third
International Joint Conference on Autonomous
Agents and Multi Agent Systems (AAMAS
2004). New York: Association for Comput-
ing Machinery.

Cheng, Y.; Maimone, M. W.; and Matthies,
L. 2006. Visual Odometry on the Mars
Exploration Rovers. IEEE Robotics and
Automation Magazine 13(2) (June): 54–62.

Chien, S.; Sherwood, R.; Tran, D.; Cichy, B.;
Rabideau, G.; Castaño, R.; Davies, A.; Man-
dl, D.; Frye, S.; Trout, B.; Shulman, S.; and
Boyer, D. 2005a. Using Autonomy Flight
Software to Improve Science Return on
Earth Observing One. Journal of Aerospace
Computing, Information, & Communication,
April 2005.

Chien, S.; Sherwood, R.; Tran, D.; Cichy, B.;
Rabideau, G.; Castaño, R.; Davies, A.; Man-
dl, D.; Frye, S.; Trout, B.; D’Agostino, J.;
Shulman, B.; Boyer, D.; Hayden, S.; Sweet,
A.; and Christa, A. 2005b. Lessons Learned
from Autonomous Sciencecraft Experi-
ment. In Proceedings of the Fourth Interna-
tional Joint Conference on Autonomous Agents
and Multi Agent Systems (AAMAS 2005). New
York: Association for Computing Machin-
ery.

Clement, B., and Barrett, T. 2001. Using
Abstraction in Multi-Rover Scheduling.
Paper presented at the Sixth International
Symposium on Artificial Intelligence,
Robotics, and Automation for Space (i-
Sairas 2001), Montreal, QB, Canada, June
2001.

Coste-Maniere, E., and Simmons, Reid.
2000. Architecture, the Backbone of Robot-
ic Systems. In Proceedings of the 2000 IEEE
International Conference on Robotics and
Automation. Piscataway, N.J.: Institute of
Electrical and Electronic Engineers.

Edwards, L.; Bowman, J.; Kunz, C.; Lees, D.;
and Sims, M. 2005. Photo-Realistic Terrain
Modeling and Visualization for Mars Explo-
ration Rover Science Operations. In Pro-
ceedings of the IEEE Conference on Systems,
Man, and Cybernetics (IEEE SMC 2005). Pis-
cataway, NJ: Institute of Electrical and Elec-
tronics Engineers.

Fox, D.; Burgard, W.; Kruppa, H.; and
Thrun, S. 1999. A Monte Carlo Algorithm
for Multi-Robot Localization. Technical
report, CMU-CS-99-120, Carnegie Mellon
University, Pittsburgh, PA.

Hayden, S. C.; Sweet, A. J.; and Christa, S. E.
2004. Livingstone Model-Based Diagnosis
of Earth Observing One. In Proceedings of
AIAA First Intelligent Systems Technical Con-

Articles

42 AI MAGAZINE

ference. Arlington, VA: American Institute
of Aeronautics and Astronautics.

Hofbaur, M. W., and Williams, B. C. 2002.
Hybrid Diagnosis with Unknown Behav-
ioral Modes. Paper presented at the Thir-
teenth International Workshop on Princi-
ples of Diagnosis (DX02), Semmering,
Austria, May 2002.

Hofbaur, M. W., and Williams, B. C. 2004.
Hybrid Estimator of Complex Systems. IEEE
Transactions on Systems, Man and Cybernet-
ics. Part B, 34(5): 2178–2191.

Jalobeanu, A.; Kuehnel, F. O.; and Stutz, J.
C. 2004. Modeling Images of Natural 3D
Surfaces: Overview and Potential Applica-
tions. In Proceedings of the 2004 IEEE Com-
puter Science Conference on Computer Vision
and Pattern Recognition Workshops
(CVPRW’04). Piscataway, N.J.: Institute of
Electrical and Electronic Engineers.

Jónsson, A. K.; Morris, P. H.; Muscettola, N.;
Rajan, K.; and Smith, B. 2000. Planning in
Interplanetary Space: Theory and Practice.
In Proceedings of the Fifth International Con-
ference on Artificial Intelligence Planning and
Scheduling. Menlo Park, CA: AAAI Press.

Larson. W. J., and Wertz, J. R., eds. 1999.
Space Mission Analysis and Design.
Dortrecht, Holland: Kluwer Academic Pub-
lishers, 1999.

Maimone, M.; Leger, P. C.; and Biesiadecki,
J. 2007. Overview of the Mars Exploration
Rovers’ Autonomous Mobility and Vision
Capabilities. Paper presented at the IEEE
International Conference on Robotics and
Automation (ICRA) Space Robotics Work-
shop, Rome, Italy, 14 April.

Meyer, C. 2005. Classification and Con-
tent-Based Retrieval of Images for Planetary
Exploration. Master’s thesis, Ecole Poly-
technique Federale de Lausanne (EPFL),
Lausanne, Switzerland, April 2005.

Morris, R.; Dungan, J.; Edgington, W.;
Williams, J.; Carlson, J.; Fleming, D.; Wood,
T.; and Yorke-Smith, N. 2005. Coordinated
Science Campaign Scheduling for Sensor
Webs. In Proceedings of the Eighth Interna-
tional Symposium on Artificial Intelligence,
Robotics, and Automation in Space. ESA SP-
603 August 2005. Noordwijk, The Nether-
lands: European Space Agency.

Nilsson, N. J. 1984. Shakey the Robot. Tech-
nical Report 223, SRI International, Menlo
Park, CA.

Pedersen, L; Sargent, R.; Bualat, M.; Kunz,
C.; Lee, S.; and Wright, A. 2003. Single-
Cycle Instrument Deployment for Mars
Rovers. In Proceedings of the Seventh Interna-
tional Symposium on Artificial Intelligence,
Robotics, and Automation in Space (i-SAIRAS
2003). Noordwijk, The Netherlands: Euro-
pean Space Agency.

Robertson, P.; Effinger, R. T.; and Williams,

B. C. 2006. Autonomous Robust Execution
of Complex Robotic Missions. In Proceed-
ings of the Forty-First IEEE Industry Applica-
tions Society Annual Conference, 595–604.
Piscataway, NJ: Institute of Electrical and
Electronics Engineers.

Simmons, R.; Smith, T.; Dias, M. B.; Gold-
berg, D.; Hershberger, D.; Stentz, A.; and
Zlot, R. M. 2002. A Layered Architecture for
Coordination of Mobile Robots. In Multi-
Robot Systems: From Swarms to Intelligent
Automata: Proceedings from the 2002 NRL
Workshop on Multi-Robot Systems. ed. A.
Schultz and L. Parker. 2002. Berlin:
Springer.

Stentz, A. 1995. The Focussed D* Algorithm
for Real-Time Replanning. In Proceedings of
the Fourteenth International Joint Conference
on Artificial Intelligence (IJCAI-95). San Fran-
cisco: Morgan Kaufmann Publishers.

Tompkins, P.; Stentz, A. T.; and Whittaker,
W. R. L. 2004. Mission-Level Path Planning
for Rover Exploration. In Proceedings of the
Eighth Conference on Intelligent Autonomous
Systems (IAS-8). Piscataway, N.J.: Institute of
Electrical and Electronic Engineers.

Tumer, K.; Uckun, S.; and Agogino, A. 2005.
A Distributed and Adaptive Health and
Mission Management Architecture. Paper
presented at the Integrated Systems Health
Management Conference, Cincinnati, OH,
August.

Verma, V.; Estlin, T.; Jónsson, A.; Pasareanu,
C.; Simmons, R.; and Tso, K. 2005. Plan
Execution Interchange Language (PLEXIL)
for Executable Plans and Command
Sequences. In Proceedings of the Eighth Inter-
national Symposium on Artificial Intelligence,
Robotics, and Automation in Space (i-SAIRAS
2005). Noordwijk, The Netherlands: Euro-
pean Space Agency.

Wagstaff, K. L.; Castaño, R.; Chien, S.;
Ivanov, A. B.; and Titus, T. 2005. Towards
Orbital Tracking of Seasonal Polar Volatiles
on Mars. Abstract presented at the Thirty-
Sixth Lunar and Planetary Science Confer-
ence, League City, TX, 14–18 March.

Williams, B. C., and Nayak, P. 1996. A Mod-
el-Based Approach to Reactive Self-Config-
uring Systems. In Proceeding of the Thir-
teenth National Conference on Artificial
Intelligence, 971–978. Menlo Park, CA: AAAI
Press.

Ari Jónsson is the dean
of the School of Com-
puter Science at Reyk-
javik University. He
received his Ph.D. in
computer science from
Stanford University in
1997. For the next 10
years, he worked at

NASA Ames Research Center, in the Intelli-
gent Systems Division. His research and
development efforts include work on con-
straint reasoning, planning and schedul-
ing, robust plan execution, mixed-initiative
planning, autonomous operations, and val-
idation of autonomous systems. Jónsson
has served as the principal investigator on
multiple technology research and develop-
ment projects, focusing on intelligent
automation for manned and unmanned
spacecraft operations, both in terms of on-
board autonomy and ground-based mis-
sion operations support. He has received a
number of recognitions and awards for his
work, including awards for his contribu-
tions to the remote agent experiment,
which took place on board Deep Space 1 in
May 1999, as well as recognition for his
work on the infusion of automated reason-
ing and planning technology into the Mars
Rover Exploration mission in 2004.

Robert Morris is a
researcher in the auto-
mated planning and
scheduling group in the
Intelligent Systems Divi-
sion at NASA Ames
Research Center. For six
years he has served as
principal investigator on

projects dealing with applying automated
information technologies for sensor web
coordination. He is currently PI or co-PI on
a number of Earth science projects for
building applications of automated plan-
ning and scheduling technologies. His
research interests include representing and
reasoning about time, constraint-based
planning, and developing search tech-
niques for constraint optimization.

Liam Peder-
sen (pedersen
@emai l . a rc .
nasa.gov) is a
r o b o t i c s
researcher at
NASA Ames
Research Cen-
ter and Carne-

gie Mellon University, with interests in
rover navigation and rover-based explo-
ration of planetary and other extreme envi-
ronments. He holds a Ph.D. in robotics
from Carnegie Mellon (2001) for the robot-
ic identification of meteorites in Antarcti-
ca. His team developed single-cycle instru-
ment placement for MER-class vehicles.
Current projects include low-cost aerial
mapping and robotic exploration of the
permanently shadowed lunar south polar
craters.

