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Abstract
Knowledge graphs (KGs) are a novel paradigm for the representation, retrieval,
and integration of data from highly heterogeneous sources. Within just a few
years, KGs and their supporting technologies have become a core component
of modern search engines, intelligent personal assistants, business intelligence,
and so on. Interestingly, despite large-scale data availability, they have yet to
be as successful in the realm of environmental data and environmental intelli-
gence. In this paper, we will explain why spatial data require special treatment,
and how and when to semantically lift environmental data to a KG. We will
present our KnowWhereGraph that contains a wide range of integrated datasets
at the human–environment interface, introduce our application areas, and dis-
cuss geospatial enrichment services on top of our graph. Jointly, the graph and
services will provide answers to questions such as “what is here,” “what hap-
pened here before,” and “how does this region compare to . . . ” for any region on
earth within seconds.
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INTRODUCTION ANDMOTIVATION

Successful decision-makers have strong situational aware-
ness. They have a comprehensive understanding of the
context in which their actions will play out. In our global,
fast-paced, and densely interconnected world, this con-
text stems from a wide range of heterogeneous resources
that span the physical and social sciences. For instance,
decision-makers at humanitarian relief organizations need
an immediate understanding of physical perils and the
regions they affect.When ahurricane causes a disaster, get-
ting supplies to the local population at the right time and
location is key. Relief coordinators also need information
about previous events such as cholera outbreaks that may
have affected the region before the hurricane makes land-
fall and experts on the ground who can coordinate relief.
Similarly, the agricultural sector, including government

agencies, FMIs, individual farmers, and retailers, requires
immediate access to data about food safety, wildfires,
floods, air pollution, worker health, supply chain disrup-
tions, and transportation networks. For instance, our part-
ners at the Food IndustryAssociation (FMI)want to under-
stand how a wildfire at one place may impact leafy greens,
grapes, and the health of workers at another place 100
miles away due to heavy smoke and ashes. Making deci-
sions based on such data is called Environmental Intelli-
gence and is gaining traction due to increased environmen-
tal stress, correlated shocks, just-in-time supply chains,
and a growing interest in Environmental, Social, and Cor-
porate governance (ESG).
Unfortunately, for practical data-driven decision-

making and data science, the first stages of gaining situa-
tional awareness consume 80% of a project’s resources, be
it funds, time, or person power. This leaves merely 20% of
the resources for the actual analysis that determines the
quality of the decisions. More concretely, most resources
are spent on data retrieval, cleaning, and integration rather
than on deriving insights from data. This puts data-driven
decision-making out of range for many tasks. Several
solutions to this well-known data acquisition bottleneck
have been proposed, both in industry and academia. Most
either target the retrieval problem by envisioning one-stop
data portals or aim at cloud-based access and processing
of data.
In the realm of Geographic Information Systems

(GIS), one partial solution is geo-enrichment service. For
instance, Esri’s GeoEnrichment service enables analysts
to enrich their local data on-demand with a range of up-
to-date demographic variables apportioned to their area
of concern and need. This has a number of advantages:
(1) in theory, data are always up-to-date and does not
age on the analyst’s hard disk; (2) in times of misinfor-
mation and information overload, the data come from a

trusted resource; (3) the data are tailored (apportioned)
to the analyst’s study area; and finally, (4) the data are
GIS-ready in the sense that it can be directly processed,
analyzed, and displayed. While current geo-enrichment
services are valuable, they also face four key limita-
tions: (1) they only serve data for a small set of prede-
fined categories, such as demographic data. (2) They are
closed data silos that encode just one domain/cultural
perspective. (3) Because they are centrally maintained,
scalability and timely updates become bottlenecks when
those services try to incorporate more (diverse) data.
(4) They do not have an integration layer that enables
follow-up queries over the enriched data. Consequently,
a new approach is needed that combines the strength
of geo-enrichment services, that is, seamless access to
contextual information for an analyst’s areas of concern,
with a technology that provides open, densely integrated,
cross-domain data across a wide range of perspectives
(Janowicz 2021).
For these challenges, knowledge graphs (KGs) promise

to provide a solution (Hogan et al. 2021; Noy et al. 2019).
They are a combination of technologies, specifications, and
data cultures for densely interconnecting (Web-scale) data
across domains in a human and machine readable and
reasonable way. They are a novel approach to publish-
ing, representing, integrating, and interlinking individual
data (notmerely datasets) by concentrating on connections
among places, people, events, and entities instead of their
properties. More formally, a KG (as a set of node-edge-
node statements called triples) can be thought of as a node
and edge-labeled directed multigraph. While the term KG
itself does not prescribe any particular technology stack,
the largest publicly available KG is the Linked Data cloud
based on the RDF/Semantic Web technology stack (Bizer,
Heath, and Berners-Lee 2011). Interconnected statements
can be of the form ThomasFire → affected → SantaBar-
bara and SantaBarbara → partOf → California. Together
with schemata (ontologies) specified in knowledge repre-
sentation (KR) languages, these triples would entail a third
triple, namely that the Thomas Fire happened in Califor-
nia. As these ontologies encode the semantics of the used
terminology, they foster interoperability without restrict-
ing semantic heterogeneity (Hitzler 2021; Janowicz et al.
2015).
Inspired by open KGs such as DBpedia (Lehmann et al.

2015) and Wikidata (Vrandečić and Krötzsch 2014) and
services such as GeoEnrichment, our KnowWhereGraph
provides a densely connected, cross-domain KG and geo-
enrichment services for a wide range of applications in
environmental intelligence by giving decision-makers and
data analysts on-demand access to area briefings at a high
spatial and temporal resolution for any location on the sur-
face of the earth. To do so, we translate data about extreme
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F IGURE 1 A layer-wise depiction of the architecture of KnowWhereGraph and the services and use-cases that it supports (as of August
2021)

events, administrative boundaries, soils, crops, climate,
transportation, and so on, into a KG and pre-integrate
them to provide answers to questions such as “what is
here,” “what happened here before,” “howdoes this region
compare to . . . .” While DBpedia and Wikidata contain
only rudimentary information about places/regions, such
as their populations, we give rapid access to information
such as the wildfires that have affected an area, the major
transportation axis crossing a certain region, and the type
of crops and soils present in a given region.

TECHNOLOGICAL APPROACH

KnowWhereGraph is quickly and continuously growing
as new data silos are identified, and subsequently inte-
grated into our graph, based on the needs of our users
and application scenarios. We have developed a number
of techniques and ontologies to aid in growing and main-
taining KnowWhereGraph. Figure 1 shows a layer-wise
view of KnowWhereGraph, as well as the services and use-
cases it supports, which directly correspond tomany of our
techniques.
First and foremost, many of our data sources naturally

overlap in space and time and we need to manage a vast
amount of heterogeneous spatial data. To do so, we par-
tially depart from traditional linked data approaches that
often represent spatial regions as points or polygons on
the earth’s surface. Instead, we utilize a Discrete Global
Grid (Bondaruk, Roberts, and Robertson 2020) called the
“S2 Grid System.” This lays a hierarchical grid over the
earth’s surface; each grid cell in a level is comprised of
four subcells of increasing spatial resolution. KnowWhere-
Graph serves data at least at S2 Level 11 (about 20 km2

per cell) for the United States. However, some regions
may have a substantially higher resolution based on data
availability, rates of change, and application needs. This
approach provides a compromise between data precision
and access speed in such a way that it does not pre-

empt downstream, finer-grained topological investigations
of the original geometries. Figure 2 depicts selected triples
from KnowWhereGraph about regions affected by a hur-
ricane, the impacts, and experts on storm-related topics.
In addition to grid cells, we serve many other region iden-
tifiers with globally unique IDs so that users can request
information about them or interlink and thereby enrich
their own data. Examples include, FIPS codes, ZIP codes,
media market areas, national weather zones, administra-
tive areas, gazetteer features, and so on.
Using the S2 grid systemas a base,we developed a design

pattern1 for easily relating how features and regions may
interact throughout the hierarchy. Additionally, we have
adopted a number of open standards such as GeoSPARQL2
and the Sensors, Observations, Sample, Actuator (SOSA)
ontology3 and its extension (Zhu et al. 2021), as well as
other frequently used ontologies such as QUDT.4 Mod-
eling all data from a sensor and observation perspective
eases querying, connecting data to the geographic features
they describe, and also enables us to link data about events
with human experts and research results. Finally, we also
worked on connectivity and coverage of our graph. In par-
ticular, we provide enriched representations of regions,
such as climate divisions or counties, and link them to
entities from Wikidata or the Geographic Names Infor-
mation System, where possible, giving instant access to a
wide range of broad contextual information such as pop-
ulation density, previous extreme events, soil health, and
so on; topological relations (e.g., RCC8) among regions
for flexible inference and triple compression; and link
together events and places through causal relationships
and provenance (Shimizu et al. 2021). For instance, we
model where a fire took place, which events it triggered,
and which regions have been affected, for example, by
heavy smoke. Altogether, this allows domain scientists to
represent geospatial objects, which are traditionally rep-
resented as vector geometries, as a collection of S2 cells
at various hierarchical grid levels and instantly have tight
integration with any other dataset in KnowWhereGraph.
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F IGURE 2 Triples from KnowWhereGraph about a hurricane, impacted areas, impacts, and experts on relevant topics

In Figure 2, for example, we focus on named places such
as counties, but users may request storm damage for any
collection of S2 grid cells. The level of S2 cells is not uni-
form across regions but depends on data layers and (in the
future) also on the underlying variationwithin these layers
across space.

CHALLENGES AND RELATION TO
ARTIFICIAL INTELLIGENCE

KG technology is to a substantial part based on KR meth-
ods and thus on the corresponding subfield of Artificial
Intelligence (Hitzler 2021). In particular, the central W3C
standards RDF (Resource Description Framework; Cyga-
niak, Wood, and Lanthaler (2014)) and OWL (Web Ontol-
ogy Language (Hitzler et al. 2012)) for representing graphs
and their schemas (known as ontologies), are formal log-
ics in the tradition of the KR field (Hitzler, Krötzsch, and
Rudolph 2010).
However, in contrast to traditional lines of KR research,

recent developments in KG data management shift the
focus to pragmatics, in particular how to make KR work
in practice—at industrial scale, functionality, and sta-
bility levels—for data management. While traditional
academic literature on KR has a heavy focus on devel-
oping KR languages and provably correct and theoret-
ically analyzed algorithms, pragmatic aspects such as
the question which KR approach works the best in

which situation, or how to apply a KR framework or
representation language to an industry scale problem,
have played a minor role in academic outlets. Simi-
lar questions such as how to lift individual data to the
graph, when to do so, at which resolution (e.g., level
of granularity), and how to balance schema complexity
between optimizing for use versus reuse remain largely
unanswered.
KnowWhereGraph focuses on this transition gap

between theoretical results and applicability in practice.
In particular, it is about the general question of how to
achieve practically relevant levels of scale and speed based
on real high-volume heterogeneous data from diverse
sources, and how to do this without an undue compromise
of the quality in representation and solutions that come
out of the KR field. In other words, KnowWhereGraph
is about finding the right trade-off between principled
approaches and rapid, scalable development. It is about
finding the sweet spot between theory and practice. In
case of KnowWhereGraph, this happens in the context of
a multidisciplinary setting that requires rapid convergence
across topics such as climate forecasts, extreme events,
health, supply chains, and even the spatio-temporal
bounds of human expertise for our pilot in disaster relief.
Integrating these datasets also requires solutions that can
handle noisy and missing (and contradictory) data, as
well as changes in perspective as they relate to different
schema, and services that enable data exploration using
similarity-based search. To handle real-world and noisy
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data, our work combines symbolic and sub-symbolic
methods for representation and reasoning.
Particular challenges related to Artificial Intelligence

that we address are (1) bringing principled KG methods
to a level of maturity sufficient for transfer to industrial
practice, (2) scaling up of methods and processes for our
applications for which we currently project a required KG
containing about 10 billion triples, and (3) KGmethods and
tools development that is aimed at maximum flexibility for
future growth, extension, and reuse.
Specific innovations within the KnowWhereGraph

work that are relevant for Artificial Intelligence include:
In terms of representation of spatial knowledge, we have
combined hierarchical grids with standard region bound-
aries and Region Connection Calculusmethods (Zalewski,
Hitzler, and Janowicz 2021), in what we believe is a novel
approach for KGs to meet scale and uniformity require-
ments. In terms of access to large-scale spatial data, we
are integrating KG and GIS technology by offering graph-
based geo-enrichment and n-degree property path queries
from within a GIS. With respect to KR methods, we
are combining top-down and bottom-up ontology engi-
neering processes with a principled modular approach
to KG schema development to balance between qual-
ity of the graph model and speed of development and
integration.

CURRENT STATUS

While KnowWhereGraph can serve a wide range of
domains and use cases that require spatial data and spatial
question answering, we have three initial pilots: Humani-
tarian relief: Together with Direct Relief we demonstrate
how our technologies can inform humanitarian supply
chains and help identify and match domain experts to
the needs of an emerging crisis. Farm to table supply
chain and sustainability: In collaborationwith the FMI, we
demonstrate how KGs can enhance the sustainability, effi-
ciency, and safety of consumer food supply with a focus
on the impact of wildfires on agriculture and food secu-
rity. Land valuation and risk of default: This new pilot is
a joint research with farm credit associations concerned
with driver-based land potential assessment for model-
based valuation and risk assessment for agricultural credit
applications and loan portfolio monitoring.
To date we have included 27 different data layers from

16 major data sources that extensively cover the topics
discussed in the domain application areas (e.g., climate
hazard, wildfire, and air quality). At the time of writing,
KnowWhereGraph already consists of about 4.9B triples,
and we expect it to grow to as many as 10–20B triples

(A)

(B)

F IGURE 3 Our Knowledge Graph-based geo-enrichment
toolbox collections for ArcGIS Pro. (A) The GeoSPARQL Query
toolbox, (B) The Property Enrichment toolbox

over the next years as we ingest additional data. Put differ-
ently, in contrast to data portals, we do not merely provide
access to datasets for download but make every single data
record within these sets web-available and query-able. We
will also provide area briefings at even higher S2 cell res-
olution, achieve global coverage (beyond our mostly US-
centric data), as well as mine new and more complex rela-
tionships across the described places and events.
Built upon the KnowWhereGraph, our geo-enrichment

services provide a set of toolboxes that support domain
scientists to explore environment-related knowledge from
within a GIS in various ways such as region-based spatial
data retrieval (e.g., soil polygons can be retrieved based
on a user-defined study area as shown in Figure 3(A)),
property enrichment for geographic entities (e.g., query-
ing a crop productivity index for each of millions of soil
polygons), direct relation exploration among geographic
entities (e.g., querying for landslides on soils previously
affected bywildfires as shown inFigure 3(B)), andn-degree
relation identification (e.g., SoilPolygonA→ affectedBy→
ThomasFire→ causedEvent DebirsFlowX).
We have also developed a range of additional services

tailored to our vertical applications. For example, the
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F IGURE 4 Left: Similarity interface for experts. Right: Follow-your-nose interface for previous disasters

KnowWhereGraph enables disaster relief specialists to
explore knowledge about experts and their areas of exper-
tise, as related to specific disasters. To achieve this, we
provide a similarity search interface and a follow-your-
nose interface, which are shown in Figure 4. In case of
the similarity interface, users can type in an expert name
into the search box and the system will return the top 15
experts who are most similar. The similarity score is com-
puted using a combination of Doc2Vec and KG embed-
ding techniques (Le and Mikolov 2014; Mai, Janowicz,
and Yan 2018), which are computed based on the partic-
ular expert’s three most cited papers, three most recent
papers, and their relation to other experts in the graph.
Figure 4 (left) shows an example of the similarity search.
From there, users can directly search information about
the experts, their area of expertise, and events that they
have worked on. Conversely, users can start by select-
ing a certain event or a geographic region, learn about
previous events, their impacts, and the relevant experts
that could be contacted. In fact, this ability to seam-
lessly navigate between physical events, areas of expertise,
affected regions, and people is one of the key strengths of
our KG.
In terms of our food safety work, KnowWhereGraph is

used to enhance assessment and strategic planning dur-
ing near real-time hazard events affecting the food supply
chain by providing online analysis, forecasting, and alerts
that are enrichedwith location and context-specific intelli-
gence, to ensure that key stakeholders throughout the sup-
ply chain are ready with backup strategies to keep prod-
ucts moving. It also allows farmers and growers to iden-
tify how they can be better prepared to mitigate and build
resilience in the face of such events. Currently, our graph
serves pre-integrated data about wildfires, smoke plumes,
and crop locations, together with topological information

F IGURE 5 Wildfire crop impacts interface displaying a smoke
plume (yellow shape) from July 4, 2018 associated with the County
Fire (red outlined shape). Within this plume, we have queried for
areas with high densities of grapes to identify areas where the crop
may be affected by smoke taint

about the affected areas. In one implementation for FMI, a
custom front-end web interface (Figure 5) and API enable
decision-makers to process a series of queries important to
assessing the impact of ongoing wildfires, smoke plumes,
and ashes on key food (crop) supply chains. Users can
progress through these queries without any experience
in using complex GIS software or the specific data and
analysis techniques necessary, seeing visualizations of the
results at each step. Despite the simplicity of this system,
the interface is dynamically generating SPARQL queries
based on the user inputs (e.g., defining a region of inter-
est, selectingmultiple crop types), sending these queries to
the graph via an API and receiving/displaying the results,
all within a matter of seconds. This system highlights the
ease with which new bespoke end-user applications can
be developed from the core resources of the KnowWhere-
Graph, enabling a multitude of use cases at the human–
environment interface.
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FUTURE PLANS

In this work, we have introduced the KnowWhereGraph,
a densely connected, cross-domain KG together with geo-
enrichment services to support a variety of application
areas that benefit from environmental intelligence. Our
graph delivers area briefings for any place on earth within
seconds to answer questions such as “what is here” or
“what happened here before.” For instance, decision-
makers and data scientists can easily retrieve all extreme
events (e.g., previous storms, fires, cholera outbreaks) that
have impacted an area that is predicted to be in the path
of an approaching hurricane. Most importantly, we do not
only serve individual data (observations) across many lay-
ers, but also connections across them. For instance, graph
hubs such as Wikidata or DBpedia contain information
about Santa Barbara, the Thomas Fire, highway 101, and
the 2018 debris flow in Southern California. However, they
do not locate the fire nor the debris flow and most impor-
tantly do not contain facts such that the fire affected Santa
Barbara and that the fire and a massive storm caused a
debris flow that killed 23 people and disrupted transporta-
tion for weeks as it blocked highway 101. This is exactly the
type of relationships that we are most interested in explor-
ing in the future. We also do not just serve data at pre-
defined levels, for example, counties, but deliver a variety
of regions identifiers thereby making KWG a gazetteer of
gazetteers. In addition,we also serve data registered to fine-
grained global grid cells. So far, the KnowWhereGraph
largely contains information about the United States due
to easy access to high-quality, well-documented govern-
mental data, as many of our use cases revolve around the
United States, and to keep the graph size at bay. In the
future, wewill increase global coverage, addmore data lay-
ers, enable geo-enrichment for open source GIS and spa-
tial statistics packages in general, and mine more (com-
plex) relationship across our entities with the ultimate
goal of creating a global KG of environmental and geo-
graphic information.

ACKNOWLEDGMENTS
The authors acknowledge support by the National Sci-
ence Foundation under Grant 2033521 A1: KnowWhere-
Graph: Enriching and Linking Cross-Domain Knowl-
edge Graphs using Spatially-Explicit AI Technologies. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

CONFL ICT OF INTEREST
No conflict of interest has been declared by the author(s).

ENDNOTES
1https://github.com/KnowWhereGraph/hierarchical-cell-features
2https://www.ogc.org/standards/geosparql
3https://www.w3.org/TR/vocab-ssn/
4http://www.qudt.org/

REFERENCES
Bizer, C., T. Heath, and T. Berners-Lee. 2011. “Linked Data: The Story
So Far.” In Semantic Services, Interoperability and Web Applica-
tions: Emerging Concepts, 205–27. IGI Global.

Bondaruk, B., S. A. Roberts, and C. Robertson. 2020. “Assessing the
State of the Art in Discrete Global Grid Systems: OGCCriteria and
Present Functionality.” Geomatica 74 (1): 9–30.

Cyganiak, R., D. Wood, and M. Lanthaler, eds. 2014. “RDF 1.1 Con-
cepts and Abstract Syntax.” W3C Recommendation. February 25,
2014. http://www.w3.org/TR/rdf11-concepts/

Hitzler, P. 2021. “A Review of the SemanticWeb Field.”Commun ica-
tions of the ACM 64 (2): 76–83.

Hitzler, P., M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S.
Rudolpheds. 2012. “OWL 2WebOntology Language: Primer.” 2nd
ed. W3C Recommendation. December 11, 2012. http://www.w3.
org/TR/owl2-primer/

Hitzler, P.,M. Krötzsch, and S. Rudolph. 2010.Foundations of Seman-
tic Web Technologies. Chapman and Hall/CRC Press.

Hogan, A., E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C.
Gutierrez, S. Kirrane, et al. 2021. “Knowledge Graphs.” Synthesis
Lectures on Data, Semantics, and Knowledge 12(2): 1–257.

Janowicz, K. 2021. “Knowwheregraph Drives Analytics and Cross-
Domain Knowledge.” ArcUser, 16–9.

Janowicz, K., F. Van Harmelen, J. A. Hendler, and P. Hitzler. 2015.
“Why the Data Train Needs Semantic Rails.” AI Magazine 36 (1):
5–14.

Le, Q. and T. Mikolov. 2014. “Distributed Representations of Sen-
tences and Documents.” In International Conference on Machine
Learning, 1188–96, PMLR.

Lehmann, J., R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N.
Mendes, S. Hellmann, et al. 2015. “Dbpedia—A Large-Scale, Mul-
tilingual Knowledge Base Extracted from Wikipedia.” Semantic
Web 6 (2): 167–95.

Mai, G., K. Janowicz, and B. Yan. 2018. “Combining Text Embed-
ding and Knowledge Graph Embedding Techniques for Academic
Search Engines.” In Proceedings of the Semdeep/NLIWoD@ ISWC,
77–88.

Noy, N. F., Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J.
Taylor. 2019. “Industry-Scale Knowledge Graphs: Lessons and
Challenges.” Communications of the ACM 62 (8): 36–43.

Shimizu, C., R. Zhu, M. Schildhauer, K. Janowicz, and P. Hitzler.
2021. “A Pattern for Modeling Causal Relations between Events.”
In Proceedings of the 12th Workshop on Ontology Design and Pat-
terns (WOP 2021), co-located with the 20th International Seman-
tic Web Conference (ISWC 2021), Volume 3011, 38–50. October 24,
2021.

Vrandečić, D. and M. Krötzsch. 2014. “Wikidata: A Free Collab-
orative Knowledgebase.” Communications of the ACM 57 (10):
78–85.

Zalewski, J., P. Hitzler, and K. Janowicz. 2021. “Semantic Compres-
sion with Region Calculi in Nested Hierarchical Grids.” In Pro-
ceedings of the SIGSPATIAL’21: 29th International Conference on
Advances in Geographic Information Systems, Virtual Event, ed. X.



AI MAGAZINE 37

Meng, F. Wang, C. Lu, Y. Huang, S. Shekhar, and X. Xie, 305–8,
Beijing, ACM. November 2–5, 2021.

Zhu, R., S. Ambrose, L. Zhou, C. Shimizu, L. Cai, G.Mai, K. Janowicz,
P. Hitzler, and M. Schildhauer. 2021. “Environmental Observa-
tions in Knowledge Graphs.” In Proceedings of the 2nd Work-
shop on Data and Research Objects Management for Linked Open
Science.

AUTH OR BIOGRAPH IES

Krzysztof Janowicz is a Professor for Geoinformat-
ics and director of the Center for Spatial Studies
at the University of California, Santa Barbara. His
research interests include knowledge graphs, GeoAI,
geo-semantics, and geographic information retrieval.
Janowicz is studying how humans conceptualize the
space around them based on their behavior, focusing
particularly on regional and cultural differences with
the ultimate goal of assisting machines to better under-
stand the information needs of an increasingly diverse
user base.

Pascal Hitzler is a Professor and endowed Lloyd T.
Smith Creativity in Engineering Chair and Director
of the Center for Artificial Intelligence and Data Sci-
ence (CAIDS) at the Department of Computer Sci-
ence at Kansas State University. His research inter-
ests include Semantic Web, Knowledge Representa-
tion and Reasoning, and Neuro-Symbolic Artificial
Intelligence.

Wenwen Li is a Professor in GIScience in the
School of Geographical Sciences and Urban Plan-
ning, Arizona State University. She also directs the
Cyberinfrastructure and Computational Intelligence
Lab (http://cici.lab.asu.edu/). Li’s research interests
include cyberinfrastructure, big data, geospatial artifi-
cial intelligence (GeoAI), and their applications in data-
intensive environmental and social sciences, includ-
ing global warming and Arctic change, terrain analy-
sis, disaster relief, and water insecurity in underserved
communities.

Dean Rehberger is the Director of Matrix and Fac-
ulty of History at MSU. Dean specializes in developing
digital technologies for history and cultural heritage.
He also overseesMatrix project planning, research, and
development, coordinating many of the projects for
the Center.

Mark Schildhauer is a Research Associate at the
National Center for Ecological Analysis and Synthe-
sis, after being NCEAS’ Director of Computing from

its opening in 1995 until 2017. His technology research
interests are in the areas of environmental informatics,
data semantics, the Semantic Web, Knowledge Graph
technologies, and Open Science, especially in the con-
text of facilitating integrative environmental and con-
servation science.

Rui Zhu is a postdoctoral scholar at the Center for
Spatial Studies, University of California, Santa Barbara.
His research focuses on geospatial semantics, geospa-
tial knowledge graphs, spatial statistics, as well as their
broader interactions in geospatial artificial intelligence
(GeoAI).

Cogan Shimizu is a Postdoctoral Researcher at Kansas
State University and co-leads the Data Semantics Lab-
oratory. He focuses primarily on the methodologi-
cal and pedagogical aspects of knowledge engineer-
ing, in particular the use of pattern-based methods for
improved outcomes in both manual and automated
learning tasks.

Colby K. Fisher is the Director of R&D and Manag-
ing Partner of Hydronos Labs, an independent environ-
mental software consulting and research firm based in
Princeton, NJ, as well as an advisor to Oliver Wyman
and the Center for Spatial Studies at the University
of California, Santa Barbara. His research involves
global scale hydrologic modeling, remote sensing data
assimilation, and high-performance computing with a
focus on applications in hydrologic extremes and their
impact on society. He holds a Ph.D. degree in water
resources, hydrology, and remote sensing from Prince-
ton University.

Ling Cai is a PhD Student at the Center for Spa-
tial Studies, University of California, Santa Barbara.
Her research interests include geospatial semantics,
geospatial knowledge graphs, qualitative spatial and
temporal reasoning, as well as geospatial artificial intel-
ligence.

Gengchen Mai is a Postdoctoral Fellow at Stan-
ford Artificial Intelligence Laboratory, Department
of Computer Science, Stanford University. He got
his Ph.D. in Geographic Information Science from
the University of California, Santa Barbara. His
research interests include spatially explicit machine
learning, GeoAI, geospatial knowledge graph, geo-
graphic question answering, and computational
sustainability.



38 AI MAGAZINE

Joseph Zalewski is a Ph.D. Student in Computer Sci-
ence at Kansas State University, working with Dr. Pas-
cal Hitzler. He is mainly interested in logic and theoret-
ical computer science.

Lu Zhou is a Postdoctoral Researcher in Data Seman-
tics Laboratory at Kansas State University. He focuses
primarily on research on the topic of Knowledge
Graphs Construction, Semantic Data Integration, and
Deep Deductive Reasoning, in particular, large-scale
Knowledge Graph Construction and Enrichment,
Ontology Matching and Alignment, Entity Resolution,
and Neural-Symbolic Integration.

Shirly Stephen is a Postdoctoral Scholar at the Cen-
ter for Spatial Studies, University of California, Santa
Barbara. Her research focuses on geospatial semantics
and geo-ontologies.

Seila G. Estrecha manages and oversees the design
and development of all software at Matrix, including
all frontend and backend aspects of web applications,
designing databases architecture, decision made for
tools and technologies to be implemented, roadmap of
software development of anyMatrix products, identify-
ing issues and common patterns, and developing stan-
dard operating procedures. She has experience imple-
menting semanticweb-based systems and standards for
ontology-centered knowledge graphs, including work
on knowledge graph modularization, ontology design
patterns, interdisciplinary knowledge graph develop-
ment, ontology alignment, data integration, and imple-
mentation of SPARQL queries.

Bryce Mecum is a Software Engineer at the National
Center for Ecological Analysis and Synthesis. He holds
an MS in Fisheries from the University of Alaska, Fair-
banks and is interested in ecological forecasting and
building reliable software systems for the sciences.

Anna Lopez-Carr is the Monitoring, Evaluation, and
Learning specialist at Direct Relief, a humanitarian
aid and disaster response organization based in Santa
Barbara, CA. She holds a Ph.D. in Geography from
the University of California, Santa Barbara; and an
M.Sc. in Political Ecology from the University of
London. Her research interests include population,
health, and the environment, particularly in relation
to natural disasters, health equity, and low-resourced
communities.

Andrew Schroeder is Vice President of Research and
Analysis at Direct Relief and Co-Founder and Board
President of WeRobotics.org.

David Smith is a Soil Scientist and former federal
Senior Executive with the U.S. Department of Agri-
culture now serving as an advisor to Oliver Wyman,
Hydronos Labs, and the Center for Spatial Studies at
the University of California, Santa Barbara. He brings
expertise in soil science and related agricultural and
natural resources management.

Dawn Wright is Chief Scientist of the Environmen-
tal Systems Research Institute (aka Esri), a privately
held and world-leading geographic information sys-
tem and spatial data science company, as well as a
professor of Geography and Oceanography at Ore-
gon State University. She holds a joint Ph.D. in Phys-
ical Geography and Marine Geology from the Uni-
versity of California, Santa Barbara; and an M.Sc. in
Political Ecology from the University of London. Her
research interests include global ecosystem character-
ization and mapping, seafloor mapping, and ocean
informatics.

SizheWang is a Ph.D. Student at Arizona StateUniver-
sity, majoring in computer science. His research inter-
ests include terrain feature detection and recognition,
multidimensional geospatial data visualization.He also
uses visualization techniques to help information dis-
covery in KnowWhereGraph.

YuanyuanTian is a PhD Student at Arizona StateUni-
versity. Her research interests include causality, GeoAI,
as well as human mobility and coastal resource man-
agement, especially in megacities and megadeltas. She
also uses natural language processing and ontology
engineering to discover geographic knowledge.

Zilong Liu is an M.A./Ph.D. Student working at the
Center for Spatial Studies in the University of Cali-
fornia, Santa Barbara. His research interests include
GIScience, geospatial semantics, and spatial-temporal
knowledge representation and reasoning.

Meilin Shi is a PhDStudent atUniversity of California,
Santa Barbara. Her research interests include geospa-
tial semantics, geographic knowledge graphs, and spa-
tial statistics.



AI MAGAZINE 39

Anthony D’Onofrio is the lead developer on the
KORA Digital Repository platform. A graduate of
Michigan State University, and former student devel-
oper intern ofMatrix, Anthony returned in 2015 to head
up development on the 3.0 release of KORA.

Zhining Gu is a PhD Student in GIScience in the
School of Geographical Sciences and Urban Planning,
Arizona StateUniversity.Her research interests include
spatial analysis, machine learning, and geographic
knowledge graph.

Kitty Currier is a postdoctoral scholar at the Center
for Spatial Studies, University of California, Santa Bar-
bara with an interest in participatory mapping and kite
aerial photography.

How to cite this article: Janowicz, K., P. Hitzler,
W. Li, D. Rehberger, M. Schildhauer, R. Zhu, C.
Shimizu, C. K. Fisher, L. Cai, G. Mai, J. Zalewski, L.
Zhou, S. Stephen, S. Gonzalez, B. Mecum, A.
Lopez-Carr, A. Schroeder, D. Smith, D. Wright, S.
Wang, Y. Tian, Z. Liu, M. Shi, A. D’Onofrio, Z. Gu,
and K. Currier. 2022. “Know, KnowWhere,
KnowWhereGraph: A densely connected,
cross-domain knowledge graph and
geo-enrichment service stack for applications in
environmental intelligence.” AI Magazine 43:
30–39. https://doi.org/10.1002/aaai.12043


