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Abstract
In this presidential address, I would like to start with a personal reflection on
the field and then share with you the research directions I am pursuing and
my excitement about the future of AI. In my personal research to advance AI
while advancing scientific discoveries, one question that I have been pondering
for some years now is whether AI will write scientific papers in the future. I want
to reflect on this question, and look back at the many accomplishments in our
field that can make us very hopeful that the answer will be yes, and that it may
happen sooner than we might expect.

A PERSONAL PERSPECTIVE ON AI

My first AAAI conference was in 1986. Just 2 weeks prior, I
had landed in Pittsburgh from my home country, Spain.
I found AAAI to be a very inspiring community. In my
view, AI researchers have been visionary, broad, inclusive,
interdisciplinary, determined, and successful at challeng-
ing endeavors. It is a very vibrant field, and I think the
AAAI conference is where I see that breadth, interdisci-
plinarity, and determination at its best. And I am very
proud to be part of this AI community that has been tack-
ling profound challenges, and I am often amazed by what
it has accomplished as I look back over the years.
In the 80s, when I arrived at CarnegieMellonUniversity,

there was a course on architectures for intelligence, where
I learned so much about the breadth of ideas in approach-
ing intelligence. Allen Newell was working with others on
the SOAR architecture, adopting cognitive models of intel-
ligence. Jaime Carbonell, who was my advisor, was doing
research on engineering diverse intelligent capabilities for
learning, reasoning, and meta-reasoning, all within the

same Prodigy framework. Tom Mitchell was working on
THEO,whichwas a sophisticated frame system to organize
general knowledge and facts about the world. Geoff Hin-
ton, who was at CMU at the time, was working on back-
propagation as an alternative basis for intelligent archi-
tectures. In that course, we also learned about different
architectures for intelligence thatwere being explored else-
where. Roger Schank at Yale emphasized how intelligence
is demonstrated in telling interesting stories that prompt
others to respond with a good follow-up question or a
related and equally interesting story. Rod Brooks at MIT
was investigating subsumption architectures, with basic
capabilities controlling sensors and actuators, and then
on those capabilities you build more elaborate ones that
demonstrate higher intelligence. All this provided a very
broad view on the approaches to study intelligence and on
the field of AI. I hope that students today continue to seek
these kinds of opportunities to appreciate the breadth of
our field.
Over the decades, I have seen tremendous accomplish-

ments from our community in all areas of AI. Figure 1
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F IGURE 1 Highlights of significant AI accomplishments over the last few decades, spanning cognitive systems, machine learning,
multi-agent systems, knowledge representation, search, planning, robotics, and natural language

shows some of these highlights. In the early 90s, when I
was finishingmyPh.D. I used the Sphynx voice recognition
system towritemy thesis. I thought it was incredible that it
worked so well. After graduation, I moved to the Informa-
tion Sciences Institute at the University of Southern Cal-
ifornia (USC), where Paul Rosenbloom was collaborating
with Allen Newell and John Laird in the SOAR architec-
ture that I mentioned earlier, using it to fly helicopters

in teams that a commander found to be indistinguishable
from human pilots. I thought that was remarkable. Also
during those years, the TD-Gammon system was learning
to play backgammon with itself and performing at human
levels. SKICAT, built at NASA’s JPL, was identifying new
quasars using data fromSky Surveys. CMU’sNavlabwas an
autonomous vehicle with a neural network at its core that
learned enough to drive itself across theUS. Deep Bluewas
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able to beat the World Chess Champion, a feat that Kas-
parov himself has said was eventually inevitable. In 1999,
RAX flew in a spaceship and generated plans for the use of
its instruments and becoming the first intelligent system
to reach outer space. It was an amazing decade for AI.
In the 2000s, many more significant accomplishments

would come from all areas of AI. I was excited to see
ontologies become very popular, with the Gene Ontology
starting to be used to describe thousands of gene products
and becoming the core connector for most biology knowl-
edge sources. Kismet demonstrated emotions embodied in
an interactive robot. In 2003, a statistical machine trans-
lation system beat the performance of manually coded
commercial-grade systems that had been built over many
years. RDF, a knowledge representation language that
become a standard for the Giant Global Graph (the next
generation of the World Wide Web), was the initial seed
for today’s widely used knowledge graphs. Stanley won a
million-dollar challenge for off-road autonomous driving.
The first robot soccer exhibition game against humans took
place, demonstrating teamwork in a highly dynamic envi-
ronment. At the end of that decade, an ensemble learning
systemwon amillion dollars for predicting user movie rat-
ings.
The past decade has also seen many exciting AI accom-

plishments, and I will just mention them briefly since they
aremore present in ourminds. In 2010, Siri was released as
a smart phone app and soon became an integral part in the
lives ofmanymobile phone users. Robot soccer teamswere
now passing and intercepting across 10 robots coordinat-
ing together. Watson won the popular Jeopardy question-
answering contest against the best human players. Alexnet
raised the bar tremendously on image recognition and con-
tributed to the revival of neural networks that are flourish-
ing today. Cognitive tutors were demonstrated to improve
learning for thousands and thousands of students. Knowl-
edge graphs were used to improve a third of the hundred
billion searches conducted in a month. Wikidata recorded
a billion triples, or logic assertions, and became the largest
crowdsourced knowledge base with more edits than its
older sister Wikipedia.
They all are incredible accomplishments of our commu-

nity, and there aremanymore that I have not covered here.
They illustrate that these advances cut across the spectrum
of all areas of AI: interaction, collaboration, search, con-
straint reasoning, sensing, perception, planning, robotics,
knowledge systems, learning, and so on. All across the
board we have been able to make tremendous progress.
This message of diversity and breadth is very important

for the AI community: that we have accomplished things
that the rest of the world may or may not have noticed
but that we know place us on solid footing to tackle future
problems. All this progress gives us hope that AI is at the

core of new approaches to tackle humanity’s crucial chal-
lenges, from science to health to innovation to education
to policy.

THE IMPERATIVE FOR AI IN SCIENCE

Accelerating scientific advances is an important grand
challenge of our time. In the case of science in particular,
I believe that it is not just useful to have AI. AI has indeed
become an imperative for science.
There is a long history of AI in science. As early as the

1950s, Herb Simon looked at cognitive aspects of how sci-
entific discovery occurs, and over the years he had many
collaborators demonstrating and replicating scientific dis-
coveries. Ed Feigenbaum, who was his student, went off to
Stanford to collaborate with Joshua Lederberg and Bruce
Buchanan on molecular biology and molecular discovery.
There is a long tradition inAI in science. Inmany cases, the
workhas beennaturally focused onmachine learning.And
there is great work on analyzing how scientists approach
new discoveries in terms of mechanism design, causality,
and paradigm shifts.
At the same time, it is important to recognize the human

limitations that curb scientific progress (Gil 2017). When
we write papers and when scientists look at the world,
sometimes there are errors and biases, there is poor report-
ing in papers, and sometimes the work is not systematic or
complete. I will mention, for example, work by Liz Bradley
and colleagues on analyzing paleoclimate data where their
AI system generated a range of hypotheses and some had
not appeared in published papers. Scientists considered
them to be valid hypotheses, but they chose not to men-
tion them. As we can see, sometimes, important hypothe-
ses are left not discussed or explored. There aremany cases
of errors because scientists are human andmakemistakes,
and sowe read about published papers being retracted after
some scrutiny about the results. I use the example of a grad-
uate student trying to reproduce the results of a paper by
two influential economists, and finding out that they had
made an error by omitting some of the data in their tables.
Another important problem is that reproducing the results
of a published paper is often very challenging, because
authors do not include enough information that is crucial
to understand how their methods actually worked. These
are all important issues that illustrate how human limita-
tions can curtail scientific progress and that I believe AI is
in a great position to address.
At the same time, there is very excitingwork that ismore

recent that I wanted to share with you on AI in science.
The computational sustainability community is develop-
ing new approaches inmulti-agent systems, constraint rea-
soning, machine learning, and optimization to address a
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range of environmental problems (e.g., Gomes et al. 2019).
There is also very important work on materials discovery,
where from automated text extraction from published arti-
cles they are able to identify particular molecules, recre-
ate the periodic table, and actually predict discoveries
that have occurred in the past just from looking at the
trends in the literature (e.g., Tshitoyan et al. 2019). There
is also increasing value for knowledge-based biomedical
data science on how knowledge is used to make progress
in life sciences (e.g., Callahan et al. 2020). There are dis-
coveries through machine learning, one of note is on
protein folding prediction which incorporated physical
and geometrical constraints to outperform any other algo-
rithms and even years of work invested by some labs
dedicated to specific proteins (e.g., Senior et al. 2020).
It is very exciting to see AI research leading to these
advances. I want to point out that these advances come
from a diversity of areas in AI. Given the formidable sci-
ence challenges that our generation faces – understand-
ing the brain, preserving our planet, deciphering the ori-
gins of the universe – I believe we need the diversity and
breadth of research areas in AI to make strides on these
frontiers.

CAPTURING SCIENTIFIC KNOWLEDGE

In the last two decades, I have worked with scientist in
many domains as well as AI researchers in diverse areas
on capturing scientific knowledge and using that knowl-
edge to advance science. I will describe first our work on
capturing scientific knowledge, then I will discuss how to
use it for systematic analyses and for interdisciplinary sci-
ence.
When you think of scientific knowledge, you think of

physics, mathematics, biological processes, and so on. In
our research, we take a step back and focus instead on the
compositionality and modularity of scientific artifacts that
already capture that knowledge.We takemodels in science
as something that we can use as building blocks. For exam-
ple, a hydrologymodel can use sophisticated physics equa-
tions to represent themovement of rain water in a complex
ecosystem. We think that AI systems do not necessarily
need to understand exactly howamodelworks, but instead
it needs knowledge about how to use that model to make
estimates and predictions. We think of models and other
scientific artifacts as modular computational objects – that
is a very important concept for us. We focus on the knowl-
edge needed to use them as modular objects: we want to
represent the input data they require, the physical vari-
ables that they model, the constraints for their use, when
their assumptions are appropriate for a particular problem,
the parameters that we would like to adjust, and the inter-

ventions or changes that we want to do on a situation in
order to improve outcomes.
We have worked on a range of projects over the years

that touch on different aspects of capturing or representing
knowledge. I will discuss here a few of them.

Controlled crowdsourcing of science
ontologies

The first one I will describe is on crowdsourcing vocabu-
laries to describe scientific data and create metadata anno-
tation standards (Gil et al. 2017b). We collaborated with
Julien Emile-Geay and Deborah Khider of the USC, and
with Nick McKay of Northern Arizona University. This is
very interesting work, because in lot of disciplines it takes
a lot of effort to agree to standard vocabularies that can be
used to describe scientific data. This is the case with paleo-
climate, where scientists study past climates in the last few
hundred or thousand years by studying very diverse data.
They drill cores in different locations on Earth, just to see
what happened many years ago through what is buried in
the ground. Some scientists drill in the ice, and study the
size of the trapped air bubbles. Others look at marine cores
and study the remains of coral that appear and how it grew
based on the climate at that time. Others drill on lakes to
study sediments. It is very challenging to develop a stan-
dardway to represent all this data. As a result, it takes them
years to analyze all this diverse data in a consistent way to
create a model of past climate at planetary scale.
We developed a new approach that we call controlled

crowdsourcing. Scientists describe the datasets that they
are using as they carry out their work, and they are each
asked to propose terms that they would like to use for their
own data. They can choose to adopt the terms proposed
by others, and pretty soon you have convergence at least
for some of the terms. We placed an editorial process on
top, very much following the footsteps of Wikipedia, but
focused on deciding on terms that are worthy of more gen-
eral adoption by the community and eventually turning
them into ontologies. Users will describe their data as they
go, continuously adding what we call crowd properties to
extend a very solid set of core ontologies that we either
reused or created.
We had to address the challenges of living with an evolv-

ing ontology. The system started with an ontology (i.e., the
current standard), scientists would annotate their data and
propose new properties to describe it, and eventually we
had a new extended ontology (i.e., a crowdsourced ontol-
ogy). However, we could not just replace the original ontol-
ogywith the new extended ontology, becausewe hadmany
datasets already annotated using the original one that had
to be updated to the new one. We were able to address
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this with AI techniques from ontology development and
for non-monotonic reasoning.
The resulting standard for describing paleoclimate data

emerged over a period of 2 years, and there was great
convergence on how to describe the different datasets
as well as a few basic terms that were adopted by all
(Khider et al. 2019). I should mention it was accomplished
with zero face to face meetings, just a single meeting was
held at the very beginning to agree to the overall pro-
cess. Thanks to AI we were able to enable this standard
that has been adopted by the community to develop com-
munity infrastructure for efficient data integration and
analysis.
It is important to realize that AI was used to synthe-

size new scientific knowledge which did not exist before,
namely vocabulary to describe data across the broad pale-
oclimate discipline.

Representing scientific workflows

Another project that I would like to discuss is capturing
knowledge about data analysis processes as semantic work-
flows in our WINGS workflow framework (Gil et al. 2011).
Workflows representmulti-step computationalmethods in
science that are repeated and are re-used often. We view
themas plans and study themwithAI techniques to reason
about goals and effects, execution monitoring and replan-
ning, failure detection and recovery, and abstractions. This
provides a very powerful framework for many science pro-
cesses and data analysismethods described in themethods
sections of scientific papers.
We do not just treat workflows as computations, instead

we treat them as objects of science that have meaning and
purpose and we attach to them semantic annotations and
constraints. Every constituent of the workflow, whether
data or computational step, has an identifier and we can
make assertions and express constraints about them. We
can assert that a certain type of input data has a prop-
erty, and that having that property makes it compatible
with some analysis step performed downstream in the
workflow. We can attach to a workflow a lot of such con-
straints. These constraints allow us to reason about how
to set parameters of specific method steps so they are cus-
tomized to the data, to reason about generating metadata
for theworkflow outputs, to reason about how to choose an
implementation among many available for a given work-
flow step, and how to validate that the overall workflow is
appropriate for the data at hand.
Figure 2 shows an exampleworkflow constraint. The left

side shows the metadata that we have for any data set, and
the right shows the step using that type of data as well
as other data. A constraint indicates that if two different

steps are used together, in this case alignment and assem-
bly, they have to use the same reference genome.
Semantic workflows also use abstraction, so a given step

could be executed with different algorithms and imple-
mentations.We can very easily reason about abstractmeth-
ods in science versus specific implementations. Through
AI, we are able to carry out very powerful reasoning for
composition and exploration of these workflows. We can
take a very simple high-level workflow and elaborate it
to add many sub-steps. It is basically what some of us in
AI would recognize as skeletal planning. Starting with a
skeletal plan with high-level steps, we can specialize each
step to the current input data based on the constraints
that we have about each option for implementing the
step.
We capture many scientific methods as semantic work-

flows. For example, we created a library of workflows
for population genomics, and we were able to reproduce
papers for which we were able to access the original data.
We obtained the same significant results that the papers
did, just by reusing workflows from that library. Our work-
flows used open source software, while some of the papers
used proprietary software. Our workflows could use more
modern algorithms, while some of these papers used very
old algorithms that were known at the time. We were able
to obtain the same results becausewe are using very power-
ful AI techniques to capture sophisticated scientific meth-
ods.
Semantic workflows also enable us to use machine

learning to detect common workflow fragments that sci-
entists use with different data, and we demonstrated this
with a large collection of neuroimaging workflows (Gar-
ijo et al. 2014). This is work with Daniel Garijo here at
USC and Oscar Corcho of the Polytechnic University of
Madrid. We were able to access hundreds of workflows
created manually by scientists and found common work-
flow fragments that scientists use about how the warping
of brain images is done, and general ways in which they
approach neuroimaging analysis. To accomplish this, we
extended process-mining techniques to exploit the seman-
tic annotations in the workflows, essentially treating them
like labeled graphs where we could then map steps across
them and create generalizations of any specific workflow
fragment. We are using AI to synthesize a new form of
scientific knowledge as commonly used abstract workflow
fragments that had not been detected before and can now
be reused for future neuroimaging analyses.

Provenance and open science

The last project that I will mention in terms of capturing
scientific knowledge is recording provenance. Provenance



8 AI MAGAZINE

F IGURE 2 Semantic workflows in WINGS capture constraints about science methods and datasets, enabling the automatic elaboration
of high-level methods to customize them to the characteristics of the given data

represents how scientific workflows, as any plans do, once
executed leave a trail of the steps that were carried out and
the results that they generate. If you have a new dataset
that results from an analysis, its provenance record has a
very similar underlying structure to the provenance of a
dataset collected through a sensor. You can also see that
all of the steps that were followed to collect or to prepare
data has a lot of similarities to the way that humans
actually put together any other digital resource. It is also
similar to the way that we describe how a piece of art is
generated by a painter or an artist, then years later may
go to a curator that cleans it up, and then eventually
appear for sale at a gallery. There is a provenance trail for
datasets just like there is for pieces of art. A provenance
record refers to agents, plans, objects, actions, successful
and failed executions, and many other abstractions that
we have been studying in AI for decades and designing
sophisticated representations and abstractions for them.
We worked closely with dozens of people representing
diverse disciplines to create a general representation and
ontology for provenance, which became a World Wide
Web Consortium (W3C) Recommendation, and we are
very proud that it has been widely adopted (Moreau et al.
2013).
How would we describe best the science findings and

their provenance? We started examining this question
with a group of visionary early career researchers to define
the geoscience paper of the future (Gil et al. 2016), other
groups followed with desiderata for the geophysics paper
of the future (Broggini et al. 2017) and the neuroscience
paper of the future (Poldrack et al. 2017). We have now
generalized the desiderata for scientific papers of the
future. I would like to convince all of us scientists to write
better papers, because if we do that then the AI systems for
machine reading and text extraction will work better. If we
do that, AI systems (and other scientists) can actually be in

a better position to understand our papers and reproduce
the results.
Recently, with Odd Erik Gundersen of Norwegian Uni-

versity of Science and Technology and David Aha of the
Naval Research Laboratory, we looked atwhat theAI paper
of the future would look like and proposed core princi-
ples for reproducibility of AI publications (Gundersen, Gil,
and Aha 2018). I believe it is very important that as a
field we formalize more how to capture knowledge prop-
erly in our publications. This is not just for the benefit of
other researchers. This will benefit AI systems, because
the papers we are writing today are too hard for auto-
mated extraction and reproducibility. AI systems will be
able to read and understand scientific publications once
we write them properly providing all the information pos-
tulated in these principles. I believe that this will facilitate
the development of AI systems for science that reproduce
and extend scientific findings, and eventually write papers
about their own findings.
That is a quick overview of our work on capturing scien-

tific knowledge, and Iwant to remark that a lot of the scien-
tific knowledge that we have captured did not exist before-
hand. I described our use of AI to synthesize new forms of
scientific knowledge as fundamental metadata properties
to describe paleoclimate data. I described how we repre-
sent scientific methods as semantic workflows, using AI
techniques to synthesize new forms of scientific knowl-
edge as commonly used workflow fragments. I mentioned
how we use general concepts from AI to create general-
ized representations of provenance for very diverse types
of scientific findings, so our publications really capture the
provenance of new results.
Once we capture all this knowledge, how do we use it

for science? I will describe two key aspects of how we use
this knowledge: systematic analyses and interdisciplinary
research.
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F IGURE 3 Overview of DISK, an autonomous system for hypothesis-driven discovery that relies on lines of inquiry specified by
scientists about the datasets and methods they seek when they pursue specific kinds of hypotheses or questions

AI FOR SYSTEMATIC SCIENTIFIC DATA
ANALYSIS

Our first major use of the scientific knowledge we capture
is to carry out systematic scientific data analysis.
We are developing a framework, called DISK, to make

hypothesis testing and data analysis more systematic (Gil
et al. 2017a). We look at the discovery cycle, starting with
formulating new hypotheses, determining what type of
data and method can be used to test it (we call this a line
of inquiry), retrieving the data from a shared repository,
analyzing the data, and then revising the hypothesis. We
have automated this hypothesis-driven discovery cycle in
our DISK project, a collaboration with Parag Mallick and
his group at Stanford University. We work in particular in
cancer omics, and there is extensive data in shared repos-
itories that is continuously growing, and therefore we do
not need to collect data ourselves.
Figure 3 illustrates how our approach works. A scientist

has a hypothesis such as whether a protein is expressed in
a certain type of cancer. The line of inquiry indicates that
both proteomic and genomic data would be useful for this
kind of hypothesis, so DISK executes a query to The Can-
cer Genome Atlas (TCGA) and to the Clinical Proteomics
Tumor Analysis Consortium (CPTAC) data repositories to
retrieve data from patients who have that type of cancer.
The line of inquiry then indicates that a proteomics work-

flow should be run with the proteomics data, a genomics
workflow with the genomics data, and a proteogenomic
workflowwith both types of data together. Then the line of
inquiry suggests a meta-workflow to combine the results.
After executing the query, the workflows, and the meta-
workflow, DISK notifies the scientist that it found evi-
dence that the genewas expressed – but suggested a revised
hypothesis that the gene that was expressed was a mutant
form of the original hypothesized protein.
These workflows integrate knowledge across disci-

plines. For example, we use workflows that combine
transcriptomics, genomics, and proteomics. Typically, this
knowledge is spread across different labs and often differ-
ent institutions. In addition, there is some analysis needed
to ensure that the combination of all of these methods is
coherent. This type of knowledge to combine and validate
analytic processes is very difficult to obtain and it takes a
lot of effort. Oncewe have captured all of this knowledge, it
can be reused very broadly just by re-running these work-
flows. A great challenge for science today is the compart-
mentalization of all that knowledge: scientists that collect
patient data from genomics and proteomics instruments
do not necessarily have expertise in both. A lot of data just
sits there waiting to be studied for lack of in-house exper-
tise or collaborators. This presents a tremendous opportu-
nity for AI systems to analyze tirelessly and thoroughly to
extract as many findings as possible.
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Representing hypotheses

DISK represents a hypothesis statement as a triple that
expresses a relationship between two objects, for example,
that a protein (first object) is associated with (the rela-
tionship) a cancer type (second object). Each hypothesis
statement has a qualifier that indicates the confidence on
the hypothesis, and an evidence trail of the analysis details
(that is, the executed workflow) that led to that confidence
level. When more data becomes available, it will run a
new analysis and revise both the confidence level and
the hypothesis. In this case, it will re-examine not just
the association of the protein with colon cancer, but it
will look for a more specialized and refined hypothesis
regarding a subtype of colon cancer. DISK has a hypothesis
ontology to express hypothesis statements, qualifiers of
confidence, analytical evidence, and the evolution of the
statement and its confidence over time.
The way we do science today is that a paper is pub-

lished with a certain finding and is considered final. How-
ever, as more data becomes available, one may wonder if
that finding may be different than what was originally dis-
covered. Perhaps the confidence is greater or the evidence
more diverse or the hypothesis more precise. We envision
AI systems like DISK that will continuously update find-
ings. This would revolutionize our current approach to sci-
entific publications, which are currently static and are con-
sidered final once they see the light.
We used DISK to reproduce a seminal cancer omics

paper by Bing Zhang and colleagues as part of the CPTAC
collaboration (Zhang et al. 2014). The paper’s major result
was the discovery of a new, fifth subtype of colon cancer
based on patient proteomes. It took 2 years to carry out
this large-scale proteogenomic study. All the data is avail-
able, and the paper has many figures that show intermedi-
ate results and a long appendix with many details. Despite
that, it took us quite a long time to understand what was
done and reproduce the results. Using DISK, we were able
to reproduce the results and find the same new fifth sub-
type of colon cancer.

Reproducing and extending science
findings

We found that even though DISK was able to indepen-
dently discover a fifth subtype and confirm the main find-
ing, it obtained very different intermediate results. DISK
obtained very different results for the peptides and pro-
teins that were present in each patient’s tumors. It found
a 10 percent difference. This is quite large. After discus-
sion with the authors, we discovered they had used mul-

tiple thresholds and complex filtering in their analysis. In
particular, they used a stringent filter at one step, and a less
stringent filter in a subsequent step. None of that wasmen-
tioned in the paper. Incorporating these filters cut the dif-
ference in the results in half, which is still quite a large
difference but it is more acceptable. This points to how
sensitive intermediate results can be to subtle variations in
the methods. The overall finding still stands, but it is quite
alarming that the detailed analytic results are so different.
We then used DISK to try a few alternative methods, for

example, different approaches to do peptide search. This
is very easy to do using semantic workflows, since DISK
can easily explore all the methods that fit a step and find
the best performing ones. We found that there was a 35
percent difference in the protein identifications, and that
key proteins were missed by some of the methods. This is
alarming, because proteogenomics publications typically
use only one searchmethod. Many proteins are likely to be
missed unless we use asn AI system like DISK to perform
a more systematic exploration of alternative methods.
DISK also showed a marked difference when using the

same method with different parameters, or different ref-
erence databases. The protein and peptide identifications
also varied substantially. In addition, we looked at other
measures, like single aminoacid variants and variant pep-
tides, and found the differences to be quite substantial.
This shows that there is a great need to use AI to systemat-
ically explore all these method parameters, and to under-
stand their differences.
I mentioned earlier that another significant opportunity

for AI is to continually analyze data and update findings as
new data becomes available. We took the dataset from the
original (Zhang et al. 2014) paper, and updated the analysis
with the new samples that have appeared in the data repos-
itories since the publication of that original paper. When
the first few new samples are added, they fall nicely in the
five subtypes. The next few samples do as well, as do the
next ones. When we added the last few samples, the clus-
tering algorithm still generated five subtypes but it grouped
the samples a bit differently so it is unclear that they are
the same five subtypes as before. This makes the analysis
more challenging, and one of the things we had to do to
revise hypotheses over time is to develop new workflows
with batch effect correction for the new samples.
Finally, using AI to carry out systematic analyses makes

it easy to apply methods to new datasets. We applied
the same workflows for datasets from colorectal cancer
(CRC95), NCI60 (nine types of cancer, multiple tissues),
ovarian cancer (OV), and breast cancer (BRCA). DISK
found, for example, that colorectal cancer has a lot less
variance than other types of cancer. This is well known,
but we were able to find that very easily very quickly.
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We think DISK can be used as a reference benchmark-
ing framework, and we demonstrated this for the National
Cancer Institute CPTAC DREAM Proteogenomics Chal-
lenge (Srivastava et al. 2019). For that challenge, the same
datasets were analyzed by dozens of teams to identify
proteins. It is very hard to pinpoint why a specific team
did better, because their methods are quite similar and
only differ in very small ways. The teams follow a typ-
ical analysis structure, where they first align the gene
sequences, then they quantify and normalize the data, and
then they predict the protein levels. We created generic
semantic workflows that DISK could reason about to
specialize them into the kinds of methods adopted by
individual teams. With this framework, we can analyze
the solutions proposed by different teams, and compare
and contrast what specific differences made a method
significantly better. We found that gene-specific models
give significantly better results, while the other steps are
only responsible for minor improvements. In addition, by
exploring all the possibilities systematically, DISK found
the optimal combination of methods.
All this work illustrates how AI can make a difference

in making scientific research more systematic. Every year
omics datasets are increasing in size, diversity, and com-
plexity. There is more and more analytic complexity, as
new algorithms and methods appear. The expertise is very
fragmented. At some point sooner or later, biomedical
researchers will not be able to keep up. Imagine if AI sys-
tems like DISK were used to analyze proteogenomic data
systematically in every cancer study. This would acceler-
ate discoveries for new problems and easily update earlier
findingswhennewdata is available. AIwill become a game
changer for omics research, and many other areas of sci-
ence where there is abundant data available.

AI FOR INTERDISCIPLINARY SCIENCE
FRONTIERS

The second way in which we use scientific knowledge is in
exploring interdisciplinary science frontiers.
We have a project called MINT, for Model INTegra-

tion, where we are looking at how climate is affecting
water availability, agriculture and food production, socioe-
conomic factors, with extremes of flooding and drought
cutting across all those aspects (Gil et al. 2021). To study
these types of problems, we have to integrate climate mod-
els, models for hydrology, agriculture models, economics
models, and social models. Each of these types of models
is developed by different disciplines each with their own
methods and approaches. For example, hydrology models
use physics equations to simulate the movement of rain
water in an ecosystem. In contrast, social models often

rely on agent-based simulations of social behaviors. It takes
months or years to assemble integrated models for a cer-
tain region, since it is truly a craft. There is increasing
demand to understand these cross-domain regional phe-
nomena. We have a growing community of collaborators
in Ethiopia, Texas, and California.

Integrating models across science domains

Our goal is to reduce the time to assemble cross-domain
models frommonths or years down to days. To accomplish
this, we are using AI to mediate between models at all lev-
els: at the variable level, at the dataset level, at the process
level, and so on. At the variable level, we use an ontology
conceived by Scott Peckham at the University of Colorado
that is very extensive and has thousands of terms. It has not
been built manually, instead it was designed using princi-
ples for how to describe physical variables in a consistent,
uniform way. With this ontology, we can be very precise
about what a particular variable in a model is measuring.
We think of a model as a computational object, where we
need to represent the data formats, the physical variables,
the constraints on how to use the model, and so on.
We also use AI to mediate models and datasets from dif-

ferent sources that have varying quality, and this is also a
big challenge. We represent what those datasets contain,
what variables they characterize, and the structure of the
files. Then, we use AI planning techniques to automati-
cally transform the datasets from their native format to
the format that a model requires. Craig Knoblock and Jay
Pujara at USC have been leading this research. There has
been a lot of work in this particular topic over the years,
and we are building on that to work with muchmore com-
plex data.
In some regions, there is simply not enough data avail-

able for modeling. This is the case with our work with
Dr. Belete Berhanu and colleagues of the Addis Ababa
Institute of Technology in Ethiopia. For that region’s river
basins, there are not enough gauges and measurements of
water levels over the last 30 years to calibrate hydrology
models. In the case in Ethiopia, if we model the Awash or
Baro rivers, the models are incredibly coarse and the visu-
alizations of flooding indicators appear very pixelated. In
contrast, in work that we are doing with Suzanne Pierce of
the University of Texas at Austin we can show the extent
of the flooding building by building in Travis County. And
the models actually generate very accurate predictions of
the flooding that correspondwell tomanual floodmaps. In
order to improve our models for Ethiopia, we use machine
learning to extract useful information from satellite data
about water levels in rivers, the degree of flooding, what
kinds of crops were typically planted over the years and so
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F IGURE 4 MINT captures metadata and constraints about models and datasets and uses them to guide users to develop and integrate
models from different disciplines more efficiently

on. These machine learning techniques incorporate basic
physics knowledge as constraints. This is work by Vipin
Kumar andhis group at theUniversity ofMinnesota. There
is significant ongoing research in combining physics-based
models withmachine learningmodels in a variety of ways,
and this is a very promising direction to use AI to improve
the accuracy of models in geosciences.

Delivering models to decision makers

As far as the models themselves, we also use AI to repre-
sent abstractions and connect the models to decisions. For
this I am going to use examples from an agriculturemodel,
developed by Armen Kemanian at Penn State University.
These kinds of models have a lot of detailed parameters,
such as nitrogen stress or solar radiation levels. However,
somebody making decisions about what crops to plant
does not really need to know that. Therefore, we focus on
the variables that a decision maker would want to adjust.
How much corn should be planted? How much sorghum
should be planted? How much irrigation should be used?
Those are the kinds of factors that a decision maker would
want to change, and then see how different weather pre-
dictions affect the outcome of interest, which is the crop
yield.
This allows us to use a model in a very compositional

way. It is still very challenging, but we have very rich
descriptions of what each model can be used for, as illus-
trated in Figure 4. This is work with Daniel Garijo and

Deborah Khider at USC. Each model has many differ-
ent variants as we adapt it for different regions, and for
each variant we capture the data formats, the physical
variables, the use constraints, and the adjustable parame-
ters.We have developed ontologies for describing scientific
software, and extended them to describe models. These
descriptions of the models can be used to drive their inte-
gration. We can see the areas that will be flooded (from a
hydrology model) and how that affects other things: the
crops that will be lost if not harvested earlier (from an
agriculture model), the roads that will not be trafficable to
bring the food where it is needed (from a transportation
model), and the towns that people will flee to reach dry
grounds.
This work illustrates how AI can integrate diverse

knowledge from different disciplines and integrate it to
create unified models to understand complex phenomena.
AI provides a crucial capability for many problems where
we need to characterize complex systems where natural,
human, and engineered processes interact, such as envi-
ronmental and geosciences research.

A PERSPECTIVE ON THE FUTURE

I have described how we capture scientific knowledge,
and illustrated how we use all of this knowledge to per-
form systematic data analysis and to engage in interdisci-
plinary science. Now I would like to take a step back, and
revisit the question that I posed at the beginning: “Will
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AI write scientific papers in the future?” If we had AI sys-
tems with enough knowledge to follow the methods of sci-
ence, we have to wonder if they could generate new find-
ings on their own and report those findings bywriting their
own papers. This would liberate scientists from routine
work and enable them to spend more time on the creative
aspects of science.
Scientific research is becomingmore andmore complex.

Many significant discoveries are the product of collabora-
tions of hundreds or thousands of scientists. The Human
Genome Project was an ambitious endeavor that involved
hundreds of scientists. The discovery of the Higgs boson in
2012 was reported in an article with more than four thou-
sand authors (Aad et al. 2012). The science questions that
we want to ask are more and more complex, and these
kinds of discoveries take several years and involve many
people. These are very unique kinds of efforts in science
today, but I wonder what it would take for AI to help make
scientific advances of this caliber more commonplace.
Gary Kasparov made an interesting observation about

humans and machines in freestyle chess. Here, a player
can be a combination of any number of humans and any
number and type ofmachines. He remarked that theywere
surprised that a weak human plus a machine plus a bet-
ter process was superior to a strong computer alone, and
superior to a strong human and a machine and a less ideal
process. This highlights the importance of organizing and
distributing work appropriately that defining a good pro-
cess is crucial when combining the skills of humans and
machines together.
What would it take for machines to collaborate with sci-

entists in similarly powerful teams? In the case of chess,
an AI system does not need any special skills to become
a team member since the only requirement is to commu-
nicate to others the recommended next move. In contrast,
for an AI system to be a collaborator in science I believe
that it needs to have very sophisticated skills. I recently
proposed a set of principles for the design of thoughtful
AI systems that will be good partners for a scientist (Gil
2017). Today, a researcher gives an AI system some data,
an algorithm, and the function to optimize. There is a lot
of research that needs to be accomplished so that an AI
system can be a partner. The principles that I have pro-
posed for thoughtful AI systems, as summarized in Table 1,
include:

∙ Rationality principle: Their behavior to accomplish
tasks should be governed by the knowledge in the AI
system. That is, there is deliberation and understanding
through knowledge about the task.

∙ Context principle: Seek knowledge and resources that
would be considered important about the context of a
given task, particularly to handle difficult or unusual

TABLE 1 Principles for thoughtful AI systems that will partner
with scientists to accelerate discoveries (from [Gil, 2017])

Principles for thoughtful AI systems
Rationality principle Behavior is governed by knowledge
Context principle Understand the purpose and

significance of tasks
Initiative principle Proactively new learn knowledge

relevant to a task
Network principle Access external sources of

knowledge and capabilities
Articulation principle Respond with persuasive

justifications and arguments
Systems principle Facilitate integration and

compositionality with other
systems

Ethics principle Behavior that conveys limitations,
uncertainty, and unknowns

cases. That is, their knowledge is not confined to the
scope of accomplishing a specific task.

∙ Initiative principle: Learn new knowledge proactively,
and can use a variety of mechanisms to acquire it (e.g.,
being taught by others, learn from data, extracted from
text, obtain by experimenting with the world, etc.).
That is, they are not just passive recipients of data or
knowledge that is selected and prepared for them by
people.

∙ Network principle: Connect to a variety of resources
online (documents, services, sensors, and effectors) as
well as people. This enables the ability to independently
access new knowledge and new capabilities.

∙ Articulation principle: Understand guidance and ques-
tions posed to them and respond not just with appropri-
ate behavior and answers but also with responses that
may include refining or changing the question, describ-
ing different approaches to answer it, describing and jus-
tifying an answer, and comparing alternative answers or
approaches.

∙ Systems principle: Exhibit basic engineering design
properties (such as compositionality, abstraction, and
connectivity) that support integration with other sys-
tems.

∙ Ethics principle: Incorporate responsible and ethical
behaviors, in particular the ability to recognize and con-
vey uncertainty and limitations inmaking decisions and
taking action.

Thoughtful AI systems that adopt these principles
would provide a solid basis for developing AI scientists.
Will AI write scientific papers in the future? I am

certainly working on many projects in that direction, and
many others are working in relevant areas. There is a lot
of good work on re-imagining the future of science and
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research. We have worked with the geosciences commu-
nity to envision a future with AI (Gil et al. 2019). I will
highlight Hiroaki Kitano’s recent article inAIMagazine on
AI to win the Nobel Prize (Kitano 2016). I think that is not
only quite an ambitious goal but also very exciting. There
are a lot of great possible outcomes along the way: AI to
reproduce published articles, AI as a research assistant,
AI as a partner, and AI as co-author.
So, will AI write scientific papers in the future? I

will go back to the observation that I made at the very
beginning of this talk: the AI community has always been
visionary, broad, inclusive, interdisciplinary, determined,
and successful at challenging endeavors so the answer
would be affirmative. At the same time, I showed that
human scientists are not systematic, they make errors,
they have biases, and they do poor reporting. This argues
that may be AI systems will significantly improve our
approach to science and will end up authoring scientific
papers with proper documentation and provenance. But
at the same time, we need to remember that penicillin
came out of a human error, where Alexander Fleming
accidentally left the lid open in a culture plate and it ended
up contaminated with Penicillium mold that killed the
bacteria. So, we need to reflect on the wonders of human
ingenuity, and its crucial role in scientific discovery and
innovation.
In the end, if we find imaginative ways to combine

humans and machines I believe we will see really remark-
able outcomes in science. My hope is that this perspective
will inspire us all to pursue significant research goals, that
if we read an article or work on a problem where we think
to ourselves “I could write an AI for that” then we will be
less excited to pursue that line of work. But if we read an
article and have a sense that only a human could come up
with that kind of idea, I am willing to bet that in many
cases we will hear things like “Well, I just was stubborn,”
“I had this firm belief in this possibility,” or even “I made a
mistake and that led me to see things differently.” I do not
know what the future will look like as scientists partner
with AI to do significant discoveries, but I am very excited
to design that future together with all of you.
In this talk, I have focused on science but the kinds

of AI research that I discussed are universally applica-
ble to other important areas where AI could be a game
changer:wellbeing andquality of life, education, social jus-
tice, innovation, and many others. You can find very com-
pelling use cases and interesting research directions in a
recent community roadmap for the next 20 years of AI
research (Gil and Selman 2019). Please continue to push
for the breadth and diversity of AI. All of your ideas, every
single one, are important for a future where AI changes
the way that humanity approaches the most formidable
challenges.
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