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Abstract
In recent years, a new line of research has taken an interventional view of recom-
mender systems, where recommendations are viewed as actions that the system
takes to have a desired effect. This interventional view has led to the develop-
ment of counterfactual inference techniques for evaluating and optimizing rec-
ommendation policies. This article explains how these techniques enable unbi-
ased offline evaluation and learning despite biased data, andhow they can inform
considerations of fairness and equity in recommender systems.

INTRODUCTION

What do recommender systems have in commonwith your
favorite medical drama, or with the trusted physician you
see for your real-life medical problems?

Dr. House: She has gone from the 25thweight percentile
to the 3rd in onemonth. Now, I’m not a baby
expert, but I’m pretty sure they’re not sup-
posed to shrink.

Mother: Well there’s this diet we put her onwhen she
stopped breast feeding . . .

Father: But it’s healthy, um, raw food. We’re vegans.
Almond milk, tofu, uh, vegetables . . .

Dr. House: Raw food . . . If only her ancestors had mas-
tered the secret of fire. Babies need fat, pro-
teins, calories. Less important: sprouts and
hemp. Starving babies is bad and illegal in
many cultures. I’m having her admitted.
(Fox 2004)

If you are a fan of ‘‘House MD”, the commonality is not
the witty dialogue or the charismatic characters, but
(hopefully) your real-life doctor does not aspire to those
standards either. Instead, at an abstract level, both recom-
mender systems and medical professionals need to reason
about interventions and counterfactuals. The interven-

tions can be under our control (e.g., admitting the baby, or
recommending a movie) or they can be chosen by others
(e.g., the baby’s diet, or a user-selected movie), but in
either case we only see the factual outcome under the cho-
sen treatment; we do not see the counterfactual outcomes,
namely what would have happened under a different treat-
ment. It is this reasoning about treatments and counterfac-
tuals that is common to both settings, and we argue that it
provides a formal basis for recommender systems. In par-
ticular, this viewpoint crystallizes why recommendation is
fundamentally different from regular supervised learning,
and highlights the fact that recommendation is primarily
about acting—not prediction. Accordingly, recommender
systems should be viewed as policies that decidewhat inter-
ventions to make in order to optimize a desired outcome.
In this article, we explain why an interventional view of

recommendation provides a rigorous framework for think-
ing about recommender systems — enabling new insights
both at a technical level for evaluation and learning, as
well as at a conceptual level when we reason about the
future of recommender systems. In some respects, the view
of recommender systems as autonomous systems that act
through their recommendations is already part of common
industry practice. For example, A/B tests are widely rec-
ognized as the gold standard for evaluating recommender
systems, and they are functionally equivalent to a con-
trolled randomized trial in medicine. However, we argue
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that the connection between recommender systems and
causal inference runs much deeper, leading to a rigorous
foundation for the field that produces new algorithmswith
provable guarantees.
One such area is offline A/B testing, which is also

known as off-policy evaluation in the literature. The offline
A/B testing methodology developed over the past years
can overcome the main drawbacks of online A/B tests;
namely, that they are slow, expensive, and pose a risk to
the user experience. Through the development of counter-
factual estimators for off-policy evaluation (Agarwal et al.
2017; Gilotte et al. 2018; Li et al. 2011; Su et al. 2019), it has
become possible to quickly test new recommendation poli-
cies using data that were logged in the past. We outline
in the following section how, and under which conditions,
these estimators provide unbiased estimates of how a new
policywould have performed in an onlineA/B test, if it had
been used instead of the policy that logged the historical
data.
A second area is machine learning for recommen-

dation using logged data, also called off-policy learn-
ing. Once we know how to obtain unbiased estimates
for new policies using logged interaction data from some
historic policy—which are often in abundance—we can
design learning algorithms that search for the best policy in
hindsight. Such counterfactual learning (i.e., which policy
would have performed best, if we had used it instead of the
policy that logged the data) is a new form of empirical risk
minimization. Most importantly, counterfactual learning
methods (Bottou et al. 2013b; Joachims, Swaminathan, and
Schnabel 2017; Swaminathan and Joachims 2015a) over-
come one of the key problems of offline learning for recom-
mender systems; namely, that conventional offline meth-
ods optimize an objective that is different from what is
measured in an online A/B test. In contrast, counterfactual
learningmethods directly optimize the same online perfor-
mance measure, and we explain in the following how they
bridge the gap between online and offline.
Finally, let us come back to the introductory example.

If your initial reaction was that doctors make life-altering
decisions while recommender systems do not, we urge you
to think again. Granted, an individual recommendation for
a movie, a track, or a product pales in comparison to the
decisions doctors need to make every day. But many small
decisions can add up to have a considerable impact. Fur-
thermore, the technologies and methods used in recom-
mender systems are being adapted to a wide array of new
applications, where they inform potentially life-altering
decisions in criminal justice (Angwin et al. 2016), the allo-
cation of government benefits (Nezik 2019), and university
admission (Waters and Miikkulainen 2014). There is now
growing discussion around fairness in recommender
systems, although no agreed-upon definition or standard

of fairness exists yet.We argue below that an interventional
view of recommender systems provides a promising frame-
work for reasoning about fairness and for addressing selec-
tion biases in some applications. We also discuss what this
means for the future of recommender systems in the final
section of this article, as we need to engage with a broad
range of social sciences and methodologies.

OFFLINE A/B TESTING

The most straightforward way to evaluate a recommenda-
tion policy is to simply expose it to users and see how it per-
forms. Typically, there will already be a policy in place—a
so-called baseline—with which we wish to compare; that
is, we want to knowwhether, and howmuch, the new pol-
icy is better than the existing one. To measure this treat-
ment effect, we can conduct an A/B test in which we ran-
domly partition the user base into two disjoint populations,
expose one population to the control (baseline policy), and
the other to the treatment (new policy).
Online A/B testing is generally considered the gold stan-

dard for evaluating a recommendation policy. By letting
the policy interact directly with users, we can observe feed-
back for any decision it makes, and (with proper random-
ization of treatment groups) obtain an unbiased measure-
ment of treatment effect by aggregating feedback within
each group. Because of its simplicity and statistical accu-
racy, many of today’s large technology companies use
online A/B testing as a final vetting process for new fea-
tures and improvements.
Though online testing is appealing from a statistical per-

spective, it is costly from almost every other perspective.
Conducting an online test requires developing an idea into
a robust, ‘‘production-ready” system that can handle web-
scale traffic. This process takes time and resources, even
for the simplest of ideas. Beyond the immediate financial
cost of preparing an online test, there is also an opportunity
cost to running a test; by exposing users to an experimen-
tal policy, which could potentially be worse than the exist-
ing policy, we risk providing an inferior user experience.
This risk is compounded by the fact that online tests gen-
erally need to run for a matter of days or weeks to achieve
statistical significance; during this time, we may provide
a suboptimal experience to users if the test is ultimately
unsuccessful.
The above costs can be mitigated by testing new ideas

in offline A/B tests. In an offline setting, we can try risky
ideas without affecting the user experience. Moreover,
we can work faster and cheaper because the overhead of
offline experimentation is lower; we do not need to develop
production-ready code or deal with the complexity of an
online service. Of course, we need data to evaluate on.
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Fortunately, we may have already collected millions (or
even billions) of user interactions with an existing system,
or from previous online A/B tests. By recycling these data
to evaluate new treatments offline, we effectively amor-
tize the cost of running online tests. Furthermore, accu-
rate offline estimates would allow us to employ traditional
machine learning methodologies, such as cross-validation
or backtesting.
However, getting unbiased evaluations in the offline set-

ting requires more care than in the online setting. In an
onlineA/B test, a simple average of observations is anunbi-
ased estimator; while in an offline A/B test, a simple aver-
age would be biased. The source of this bias comes from
the fact that we are estimating the performance of a tar-
get policy using data that were collected under a differ-
ent policy, the so-called logging policy. The distribution of
actions that the logging policy took can influence any esti-
mate we make using the logged data. If the logging pol-
icy selected actions uniformly at random, then it would
not introduce any bias. Unfortunately, this is an unrealis-
tic expectation, since exposing users to such a policy could
have significant negative consequences. A more likely sce-
nario is that the logging policy is non-uniformly stochastic;
that it favors certain actions over others—hopefully, in a
way that is beneficial to users—but still with some random-
ness. Because the distribution of actions is non-uniform,
we observe outcomes for certain actions more than others;
and when we use these observations to evaluate a new pol-
icy, our estimates—and the decisions we make using these
estimates—will be biased bywhichever actions the logging
policy favored.
To make this issue more concrete, consider a sim-

ple movie recommender for a video streaming service.
Imagine that, at each visit, the recommender selects a
single movie to suggest to the users after they log in.
Assume that we have collected data from this recom-
mender using a stochastic policy whose distribution is
weighted towards more popular movies, such as block-
buster superhero movies. When we use these data offline
to evaluate new policies, wemaymistakenly conclude that
policies that favor superhero movies are better, since these
movies are over-represented. This is the so-called ‘‘rich-
get-richer” effect, wherein things that are already very suc-
cessful become more so due to their ubiquity. At the same
time, we may miss opportunities to provide more person-
alized recommendations due to insufficient data in cer-
tain niches. For instance, consider a user whose favorite
genre is Scandinavian thrillers. Theymight also appreciate
superhero movies, so recommending them an installment
from the Avengers franchise is a safe bet. Yet that would be
suboptimal; they wouldmuch preferMidsommar, a horror
film set in Sweden.

We pause here to note that traditional metrics used
for supervised learning—such as the accuracy of click
prediction—do not account for these inherent biases. We
could bolster our offline metrics with ad hoc measures—
such as diversity or popularity of recommended content—
to ameliorate failure modes like in the example above.
However, offline comparisons made with these metrics
may not reflect the outcome of online A/B tests. In the next
section, we will revisit this issue and derive unbiased met-
rics that are composable with supervised learning.
We now describe a principled approach, borrowed from

causal inference, that can correct the biases that occur
during data collection, and thereby yield unbiased esti-
mates of the metrics that we care about. This technique
addresses the counterfactual question of how well a new
policy would have performed if it had been used instead of
the policy that logged the historical data. For this reason,
such estimators are often called counterfactual estimators.
To present the technique, it will be helpful to first intro-

duce some light notation and terminology. Suppose each
moment in time (indexed by i) is represented by some
contextual attributes, which we denote by xi. These could
describe the current user, time of day, etc. The logging pol-
icy, denoted as π0, receives xi and responds by sampling an
action, ai; for example, a movie that it presents to the user.
The user in turn responds by either accepting or reject-
ing the recommendation; we quantify this response with
a variable, ri = r(xi, ai), which is typically called a reward.
Given a logged dataset of n such interactions, our goal is to
evaluate the expected utility,

𝑈(𝜋) = 𝔼𝑥𝔼𝑎∼𝜋(⋅|𝑥 )[𝑟(𝑥, 𝑎)] (1)

of a new target policy, π. This policy induces a condi-
tional probability distribution over actions (given con-
texts), denoted as 𝜋(𝑎|𝑥), and in the simplest case it
picks one particular action for each context with proba-
bility 1. A flawed estimator for U (π) would be to sim-
ply multiply the logged rewards by the probability under
the target policy: 𝜋(𝑎𝑖|𝑥𝑖)𝑟𝑖 . This weighting suffers from
the bias issues described above, since the distribution of
logged actions is already weighted by the logging policy,
π0. To correct this bias, we need to divide each reward by
the propensity𝜋0(𝑎𝑖|𝑥𝑖) (i.e., the probability of the logged
action, ai, under the logging policy). This yields the follow-
ing unbiased, counterfactual estimator:

�̂�(𝜋) =
1

𝑛

𝑛∑
𝑖=1

𝜋(𝑎𝑖|𝑥𝑖)
𝜋0(𝑎𝑖|𝑥𝑖) 𝑟𝑖. (2)

This inverse propensity score (IPS) estimator (Horvitz
and Thompson 1952; Rosenbaum and Rubin 1983) can be



22 AI MAGAZINE

(A) Dataset before IPS weighting (B) Dataset after IPS weighting

F IGURE 1 The effect of IPS weighting. The gray rectangle represents the action space (conditioned on a given context), wherein each
dot is a logged action, whose color indicates ‘‘good” (green) or ‘‘bad” (red) reward. Dark gray shading represents the logging and target
policies. Dots in the figure on the right are resized to represent the importance weights, π(ai|xi)/π0(ai|xi)

viewed as a form of Monte Carlo simulation (i.e., approxi-
mating an integral by sampling) wherein the goal is to esti-
mate an expectation under a target distribution using sam-
ples from a (different) source distribution. It is essentially
like tossing a biased coin to estimate the expected number
of heads under a differently biased coin.
Figure 1 illustrates the effect of IPS weighting. On the

left is a visualization of the dataset, wherein the action
space (conditioned on some context) is represented by a
two-dimensional plane. Each dot represents an action that
was sampled by the logging policy, which is represented
by a shaded circle. Dots that are closer to the center of the
logging policy are more likely under its sampling distribu-
tion. Each dot is colored based on how the user responded;
green indicates ‘‘good” reward (e.g., the user watched the
movie to completion), while red indicates ‘‘bad” reward
(e.g., the user rejected the recommendation). On the right,
we visualize the re-weighted dataset using IPSwith a given
target policy. Each dot has been resized based on the ratio
𝜋(𝑎𝑖|𝑥𝑖)∕𝜋0(𝑎𝑖|𝑥𝑖), which is referred to as an importance
weight. Dots that are close to the logging policy but far from
the target policy are small, while dots that are far from the
logging policy but close to the target policy are large. Thus,
IPS emphasizes events that were rare under the logging
policy but are likely under the target policy. These ‘‘under-
explored” actions are the most important, because they
could have a large impact on the target policy’s expected
reward.
If the logging policy is sufficiently randomized, such that

it has a non-zero probability of selecting any action that has
a non-zero probability under the target policy, then the IPS
estimator is statistically unbiased; meaning, its expected
value (over realizations of the dataset) is equal to the tar-
get policy’s true expected utility. This is precisely the qual-
ity that we want from an estimator because it tells us how
a new policy will perform online, thereby allowing us to
make decisions about which policies we deploy. Unfor-
tunately, this advantage comes with several challenges.

First, the logging policy needs to be randomized, which
requires a trade-off between exploration (better data for
offline A/B tests) and exploitation (less risk for the user
experience). Second, IPS requires us to compute and log
propensities, which necessitates additional logging infras-
tructure and logging policies for which the propensities
are easy to compute. Alternatively, it may be possible to
estimate the propensities—either by Monte Carlo simula-
tion or supervised learning—but this approximation usu-
ally introduces some bias. Last but not least, the primary
issue with IPS is that very small propensities result in very
large importanceweights, so the estimator can have a large
variance. High variance reduces the effective sample size;
meaning, more data are needed to achieve a reliable esti-
mate.
The IPS estimator’s variance problem has received

much attention, and many solutions have been proposed.
Arguably, the simplest solution is to truncate the propensi-
ties (or importance weights), such that they are ‘‘clipped”
to a reasonable range (Ionides 2008). Alternatively, one
could simply omit data records for which the propensi-
ties are too small (Bottou et al. 2013a). Other methods
use multiplicative control variates to normalize the impor-
tance weights such that they sum to one (Swaminathan
and Joachims 2015b). There are alsomethods that combine
IPSwith a direct estimation of the reward (utility) function,
so that IPS is only used to correct mistakes in the predicted
reward (Dudík, Langford, and Li 2011; Liu et al. 2019; Vlas-
sis et al. 2019, Su et al. 2019). All of these methods effec-
tively reduce the variance of the estimator—however, this
usually comes at the cost of introducing bias. This trade-off
between bias and variance is central to offline evaluation.
Formal analyses have quantified this trade-off, and we can
use these to derive confidence intervals (Strehl et al. 2010a;
Thomas, Theocharous, andGhavamzadeh 2015) to account
for statistical error.
With unbiased (or minimally biased) utility estima-

tors, we can obtain reliable offline estimates of how a new
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policy will performwhen deployed online. Yet, where does
the new policy come from? In the next section, we discuss
how to learn policies from logged data, so as to maximize
expected online utility. We can also optimize auxiliary
criteria, such as ensuring that the recommendations are
equitable to both users and content providers. We discuss
these fairness considerations in a later section of this
article. Finally, we also discuss practical considerations
and challenges associated with offline evaluation and
learning.

OFFLINE LEARNING FOR
RECOMMENDATION

The offline A/B tests and counterfactual estimators dis-
cussed in the previous section give us a way to estimate
the performance of many policies without having to field
them. This leads to a natural way to compare various poli-
cies and search for the best one in hindsight.
To formalize this strategy for policy learning, suppose we

are given a class of policies, Π, in whichwe can search for a
new, better policy. This class could be that of simple linear
models or complicated neural networks. We want to find
a specific policy, π ∈ Π, that gives us the highest expected
utility, U(π). Unfortunately, U(π) is unknown, but we can
obtain an unbiased estimate, �̂�(𝜋), using a counterfac-
tual estimator, such as the IPS estimator described in the
previous section. By optimizing this estimate, we perform
counterfactual risk minimization (CRM), which is analo-
gous to the idea of empirical risk minimization from super-
vised machine learning. Specifically, we search for the pol-
icy that gives us the highest estimated utility, measured by
�̂�(𝜋):

argmax𝜋∈Π�̂�(𝜋). (3)

While the IPS estimator (Equation (1)) is a common
choice for �̂�(𝜋), other counterfactual estimators can be
used as well, such as self-normalized IPS (Swaminathan
and Joachims 2015b) or doubly-robust (Dudík, Langford,
and Li 2011). It is easy to see that improved counterfactual
estimators allow more reliable comparisons between dif-
ferent policies in Π, and thus better learning performance
(Strehl et al. 2010b).
Let us illustrate the CRM approach by considering a

movie recommendation problem in which we want to rec-
ommend one movie in the top banner of a website. In
this setting, the context x is a feature vector encoding all
the personal information and viewing history of the cur-
rent user, while each action a (i.e., movie recommenda-
tion) is also described by a feature vector. For simplicity,
we assume that the feedback r is a binary indicator (e.g.,

whether the user watched the recommended movie to the
end), but it can be any real-valued reward. Here the pol-
icy class we consider is that of softmax policies (Swami-
nathan and Joachims 2015a),ΠSM,where eachπw(x)∈ΠSM
is defined as

𝜋𝑤(𝑎|𝑥) = 𝑓𝑤(𝜙(𝑥, 𝑎))∑
𝑎′∈𝐴

𝑓𝑤(𝜙(𝑥, 𝑎′))
, (4)

for a scoring function f (e.g., a neural network)with param-
eters w (e.g., network weights) and a feature representa-
tion Φ(x, a). The features could be any embedding we have
for the context-action pairs, or it can be a simple con-
catenation of the context and action features. This pol-
icy is a ‘‘soft” version of the arg-max function, and the
Euclidean length of w determines how random its selec-
tions are; largerw typically yields amore deterministic pol-
icy, whereas smaller w yields a more uniformly random
policy. The CRM learning objective in this specific setting
is:

argmax𝜋𝑤∈ΠSM

1

𝑛

𝑛∑
𝑖=1

𝜋𝑤(𝑎𝑖|𝑥𝑖)
𝜋0(𝑎𝑖|𝑥𝑖) 𝑟𝑖. (5)

This optimization can be solved using standard opti-
mization techniques (e.g., stochastic gradient descent).
There are several improvements one could make to this
learning objective, such as adding a regularizer to penalize
the complexity of the policy, or adding a variance penaliza-
tion term, both of which reduce overfitting (Swaminathan
and Joachims 2015a). Various advanced CRM methods
have also been studied recently (Chen et al. 2019b; Faury
et al. 2020; Joachims, Swaminathan, and de Rijke 2018;
Kallus 2020; London and Sandler 2019; Ma, Wang, and
Narayanaswamy 2019; Wu and Wang 2018).
Note that the CRM approach to policy learning is fun-

damentally different from a ‘‘Model the World” approach
to learning, in which the logged data are used to learn
a reward predictor. The reward predictor can be learned
using regression or matrix factorization; then, given the
learned predictor, the resulting policy picks the action that
has the highest predicted reward. While straightforward at
first glance, there are a few drawbacks.
First, the performance of this learning algorithm

depends strongly on the estimation accuracy of the reward
predictor. Since we train the reward predictor using logged
data, it is expected that the model will be estimated more
accurately on the actions that the logging policy sampled
more often, and less accurately on the actions it sampled
infrequently. Second, unless the reward model is prop-
erly specified, approximation errors in learning the reward
predictor will translate to modeling bias; hence, a poten-
tially poor policy. Finally, andmaybemost importantly, the
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‘‘Model the World” approach is rather indirect; instead of
directly learning the optimal policy, we first solve a harder
problem, which is to get an accurate reward predictor for
all context-action pairs. A good reward estimator will usu-
ally translate to a good policy. However, to derive a good
policy, we do not need to get an equally accurate estimate
inmagnitude for all actions; we only need to get the correct
maximizer of the reward for each context to provide the
optimal recommendation. The CRM approach avoids this
indirection by directly optimizing an unbiased estimate of
the desired online metric.
In summary, the CRM approach and the ‘‘Model the

World’’ approach to learning are two standard approaches
used in off-policy learning. On one hand, the CRM
approach gives us an unbiased learning objective that is
based directly on the online metric. However, its high vari-
ance may affect its generalization performance. On the
other hand, the ‘‘Model the World’’ approach has much
smaller variance by avoiding the use of importance sam-
pling weights, and it is a reasonable alternative when the
CRM approach gives us unstable estimates.
However, the bias is a severe issue for the ‘‘Model

the World’’ approach and it exists even when we have
an infinite amount of data. Recently, there are more
advanced learning objectives that combine these two com-
ponents more efficiently, such as doubly-robust (Dudík,
Langford, and Li 2011) and continuous adaptive blending
(Su et al. 2019), which aim to leverage the benefits from
both approaches.

FAIRNESS IN RECOMMENDATION

So far we have considered the utility (i.e., expected reward)
as ourmain objective, which ideally reflects howuseful the
system is to an average user. Optimizing utility has a long
history in information retrieval (Robertson 1977), and it is
still the key objective of most learning algorithms. Yet, it is
now widely recognized that utility is not the only objec-
tive that a recommender system should optimize, espe-
cially when there are multiple stakeholders with poten-
tially divergent interests. Many systems can be viewed as
mediating a two-sided market in which the recommenda-
tion policy affects the users, the items, the platform and its
dynamics, and the dynamics of the recommender system
itself (Abdollahpouri et al. 2020; Evans and Schmalensee
2016; Singh and Joachims 2018; Wang and Joachims 2021).
We argue that a causal view of recommendation—one
that understands a recommendation policy in terms of the
effects its actions have on all stakeholders—adds a rigor-
ous theoretical basis for reasoning in this complex space.
Once we move away from the conventional objective of

optimizing utility, one quickly arrives at trade-offs, and the

question of how tomake these trade-offs in a fair way. How
does maximizing utility to the users relate to fairness con-
siderations for the items? How should high average util-
ity be traded off against more uniform utility for all sub-
groups of users? How should short-term objectives (e.g.,
clicks) be traded against long-term objectives (e.g., avoid-
ing polarization)? Clearly, there is no universal technical
answer for how to make these trade-offs (Holstein et al.
2019). However, we can provide technical answers for how
to design systems that guarantee certain trade-offs, help
reason about what can and what cannot be implemented,
and help understand the dynamics of such systems. As
designers of recommendation systems, this gives us a cru-
cial role in collaboration with social scientists, legal schol-
ars, and domain experts to determine appropriate fairness
goals for different applications (Abebe et al. 2020).
To start, a prerequisite for fairness is our ability to mea-

sure the effect of actions in an unbiased way. This is prob-
ably where the counterfactual estimation approach intro-
duced above is most directly helpful, since it remedies the
effect of selection biases (i.e. biases introduced into the data
through the actions selected by the logging policy). Con-
sider the scenario of a movie recommender system, where
we want to estimate the merit of each movie from past
user feedback (e.g., completed streams) given the rankings
our system presented. If we cannot estimate merit accu-
rately, there is little hope that we can fairly allocate expo-
sure (e.g. how oftenwe recommend amovie, where to posi-
tion amovie in a ranking, etc.) to themovies based on their
merit. Unfortunately, the policy we used to present rank-
ings has an influence on the feedback we receive, and it
creates a position bias, which creates a form of selection
bias (Joachims et al. 2007). Movies higher in the ranking
will be discovered more easily, and are thus more likely
to be streamed more often. This implies that movies (or
job candidates, college applicants, etc.) that were histori-
cally disadvantaged in the ranking have little chance of ris-
ing to the top based solely on their merit, thus amplifying
past inequities and leading to undesirable system dynam-
ics (Joachims, Swaminathan, and Schnabel 2017; Mehrotra
et al. 2018; Morik et al. 2020). Fortunately, estimators simi-
lar to Equation (1) can provide unbiased estimates, despite
the selection biases in the feedback data (Agarwal et al.
2019; Joachims, Swaminathan, and Schnabel 2017; Wang
et al. 2018), thereby disrupting the rich-get-richer dynam-
ics.
But even if we manage to eliminate all exogenous

sources of biases, of which selection bias is only one, there
are still design choices endogenous to the recommender
systems that affect the various stakeholders (Abdollah-
pouri et al. 2020; Singh and Joachims 2018; Wang and
Joachims 2021). The counterfactual estimators and regu-
larizers discussed in this article can again be useful in
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TABLE 1 Ranking by probability of relevance can lead to
disparate or undesirable allocation of exposure

Rank Article P(relevant) Exposure
1 L1 50.99 High
2 L2 50.98 High
3 L3 50.97 High
. . . . . . . . . . . .
10 R1 49.03 Low
11 R2 49.02 Low
12 R3 49.01 Low
. . . . . . . . . . . .

addressing these endogenous sources of bias. Consider,
for example, fairness to the items in a recommender sys-
tem that serves a two-sided market (Biega, Gummadi, and
Weikum2018; Singh and Joachims 2018). It was shown that
maximizing the utility to the users can lead to an unde-
sirable winner-takes-all dynamic for the items (Singh and
Joachims 2018). The following example illustrates this. It
builds on a key result from information retrieval, named
the probability ranking principle (Robertson 1977), which
shows that ranking the items by their probability of rel-
evance maximizes utility for many commonly used util-
ity metrics. Let’s consider a non-personalized ‘‘top news’’
panel on a news aggregation website, where we managed
to get highly accurate and unbiased estimates of relevance
probabilities—the probability that an incoming user will
want to read an article. If we follow the probability ranking
principle and rank the articles by their probability of rele-
vance, we get the ranking in Table 1. This ranking reflects
that around 51% of the visitors prefer the left-leaning arti-
cles from newspaper L, and around 49% prefer the right-
learning articles from newspaper R. The problem is that
even though the two news sources have almost equal prob-
ability of relevance, the ranking gives disproportionately
more exposure to the articles from L than from R. Not only
may newspaper R object to this ranking as unbalanced, it
can also lead to undesirable polarization dynamics where
right-leaning users abandon the platform. Such scenarios
apply not only to news rankings, but to most other set-
tings where the items or their providers gain utility from
the recommendation policy. In short, while maximizing
utility to the users may be the only objective in some set-
tings, in others it does not necessarily lead to a desirable
allocation of exposure to the items, and recent work on
merit-based fairness-of-exposure augments utility maxi-
mization with additional fairness constraints (Beutel et al.
2019; Biega, Gummadi, and Weikum 2018; Celis, Straszak,
and Vishnoi 2017; Morik et al. 2020; Yao and Huang 2017;
Singh and Joachims 2018, 2019; Wang and Joachims 2021;
Yadav, Du, and Joachims 2021; Zehlike et al. 2017) or social-

welfare objectives (Mehrotra et al. 2018; Vondraťk 2008;
Wang and Joachims 2021; Xiao et al. 2017; Yue andGuestrin
2011).
Finally, the example also illustrates the point that a sys-

tem can provide inequitable utility to subgroups of the
user population, even if we optimize a user-centric notion
of utility in the form of an average reward. Because we
are optimizing an average, this can unfairly marginalize
minority user groups, decreasing how useful the recom-
mender system is to them in order to better serve the
majority (Wang and Joachims 2021; Xiao et al. 2017). All
these additional fairness requirements make the prob-
lem of recommendation more complex, since we move
from maximizing utility to a more complex objective that
includes fair allocation of exposure to items and fair util-
ity trade-offs for users. Counterfactual estimators are very
promising for evaluating these objectives and the ‘‘what-
if’’ questions implied by different design choices, since
they provide a path to unbiased offline estimates of online
impact.
While the view of recommendations as interventions

and its corresponding causal inference framework pro-
vide novel opportunities for implementing fairness objec-
tives, we also have to be mindful about their impact. As
already mentioned above, a key ingredient of counterfac-
tual evaluation and learning is the collection of logged
data using a logging policy that is stochastic enough to
explore the potential outcomes when we take different
actions. This exploration comes at an immediate cost to
the users, and we have to make sure that this cost is equi-
tably distributed. However, even if the short-term cost is
balanced between stakeholders, insufficient exploration
for some groups can put them at a disadvantage in the
future. Less explorationmeans larger variance when using
IPS-style (Dudík, Langford, and Li 2011; Horvitz and
Thompson 1952; Su et al. 2019) estimators for offline eval-
uation and learning, and thus may lead to policies that
are sub-optimal for under-explored items or user groups.
Designing logging policies that balance these short-term
and long-term costs is an important question for future
work.
While our understanding of fairness in recommender

systems is growing, there is still no consensus on what
exactly fairness means for a recommender system. Appro-
priate definitions of fairness might be different for differ-
ent applications (Holstein et al. 2019). Furthermore, we
should be careful when we incorporate fairness into a
recommender system, since an incomplete understand-
ing of the system dynamics may lead to undesirable long-
term impact (Liu et al. 2018). This calls for collaboration
with social scientists, legal scholars, and domain experts
to determine appropriate fairness goals for particular rec-
ommendation applications.



26 AI MAGAZINE

PRACTICAL CONSIDERATIONS AND
CHALLENGES

While there are many advantages of offline evaluation
and learning, there are also some inherent challenges
to adopting these methodologies in a realistic setting.
Notably, the importance-weighting estimators introduced
above are only unbiased if the logging policy is sufficiently
randomized, and the propensities (i.e., probabilities) of
the selected actions must be known. These requirements
pose two fundamental problems, which we now discuss.
Randomized data collection is risky from a business per-

spective because it can harm the user experience. Ran-
domization typically increases the probability that users
receive irrelevant recommendations—which, if excessive,
erodes user satisfaction, and could lead to attrition. Due
to this risk, data collection must strike a balance between
exploring the user’s preferences (via randomization) and
exploiting what is known about their preferences so far.
Fortunately, this trade-off is precisely what multi-armed
bandit algorithms are designed for; so if a stochastic ban-
dit algorithm (such as Thompson sampling (Thompson
1933), Boltzmann exploration (Cesa-Bianchi et al. 2017) or
EXP3 (Auer et al. 2002; Seldin and Slivkins 2014)) is already
being used to optimize recommendations, one can log its
user interactions for future offline analysis. Since bandits
usually converge to a deterministic policy, one can either
‘‘freeze” updating after a certain amount of time, ormodify
the algorithm to always explore a little bit (e.g., ∈-greedy).
Unfortunately, the requirement of knowing the propen-

sities of logged actions disqualifies some bandit algorithms
from data collection. For example, the posterior distribu-
tions of some Bayesian bandits (such as linear Thompson
sampling (Agrawal and Goyal 2013)) do not allow for effi-
cient computation of propensities. They can be approxi-
mated usingMonteCarlomethods, but this can bias offline
evaluation.
Even if the logging policy is sufficiently randomized and

supports efficient, exact propensity calculation, the logging
policy may be part of a larger system that filters the recom-
mendations, thereby complicating data collection. Indeed,
most recommender systems apply some form of guard-
railing to prevent ‘‘catastrophic” failures, such as recom-
mending content that is blatantly inappropriate for the
users. While these precautions are necessary, they intro-
duce a bias that may be difficult to quantify — and hence,
difficult to compensate for.
The challenges posed by offline evaluation have inspired

many estimators and algorithms, but even this abundance
of solutions poses a challenge to practitioners, since they
must choose the best method for their application. This
may require intimate knowledge of the intricacies of the
application, such as: how stochastic the logging policy

is; how much data can be collected versus how much is
needed for confident estimates; andwhether the target pol-
icy is appropriate for the estimator. If feasible, one can
empirically validate offline estimators via online experi-
mentation; for instance, by comparing online metrics to
their offline estimates.
Clearly, there are many challenges to deploying offline

evaluation and learning in practice. Yet, there is already
growing adoption in real-world systems, which demon-
strates that, despite the challenges, the approach is feasible
and robust (Agarwal et al. 2016; Chen et al. 2019a; Gruson
et al. 2019).

OUTLOOK AND EMERGING TOPICS

In the previous sections, we showed that viewing recom-
mendations as interventions provides a promising frame-
work for evaluating and learning new interaction policies.
In particular, the machine learning models driving these
policies are correcting for the bias that the system’s actions
induce in the logged data. This principled approach based
on causal inference allowed us to evaluate machine learn-
ing models using offline data as if they were deployed in
A/B tests. Online A/B testing however is not the be-all and
end-all of recommenders. It can be prohibitively expensive
whenmeasuring very long-term system effects, or identify-
ing how users might co-adapt to a new system. Hence, we
need to carefully interpret and extend A/B testing to build
reliable online systems (Kohavi et al. 2012). The interven-
tional framing of recommenders can prove to be useful in
reasoning beyond what A/B tests can measure, and pro-
vide insights on how recommendation policies should be
evaluated and trained.
When we introduced counterfactual estimators earlier

in this article, we assumed that only a single item is rec-
ommended during each interaction. However, most prac-
tical recommendation interfaces display rankings or slates
of recommended items. Directly applying the IPS esti-
mator is impractical in these situations because the vari-
ance of the estimator typically scales with the number
of possible rankings or slates. There are combinatorially
many rankings or slates and IPS would require unreason-
able amounts of randomization and logged data to return
a reliable estimate. Several practical counterfactual esti-
mators have been developed that exploit the combinato-
rial structures in these interfaces (McInerney et al. 2020;
Swaminathan et al. 2017). Ongoing research uses ideas
from doubly-robust estimation and non-parametric statis-
tics (Bibaut et al. 2019; Su et al. 2020; Yin and Wang 2020)
to further tune the bias-variance trade-off of these kinds of
estimators and provide a plug-and-play practical solution
for realistic recommendation interfaces (Dimakopoulou et
al. 2019; Ma et al. 2020a).
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The study of recommender systems has crucially relied
on good online metrics and we now have techniques that
can estimate them offline and even reliably optimize them.
When we discussed learning, we saw that counterfactual
estimators are directly composable with standardmachine
learning principles, and that they lead to new loss func-
tions and regularizers for off-policy training. However, the
exposition in this article assumed that themetrics are well-
modeled as bandit feedback, which can be rather myopic.
There are several session-based metrics that have been
developed for recommender systems which aim to capture
long-term user utility (Jannach, Mobasher, and Berkovsky
2020; Ludewig and Jannach 2018). Sequence-basedmodel-
ing techniques (inspired by the language modeling litera-
ture) have also been studied to optimize them (Ma et al.
2020b). However, there is still a disconnect between the
offline objectives optimized by these techniques and the
online session-based metrics. Developing counterfactual
estimators for longer-term metrics, and developing reli-
able training paradigms to optimize them remains an open
problem. Borrowing techniques from reinforcement learn-
ing appears to be a promising direction to approach this
problem (Chen et al. 2019a).
Whenwe discussed fairness, we observed that it is useful

to view recommenders as mediating mechanisms (rather
than stationary interaction policies) and require that they
be robust formany different kinds of objectives andmanip-
ulations. Fairness is only one dimension of the vast land-
scape of robustness research. Like fairness, robustness can
take many forms across different applications, and the fol-
lowing types of robustness may be useful in several set-
tings.

Item manipulation: Item creators know that recom-
mender systems must perform some amount of
exploration to determine the quality of new items
(see (Choi and Sayedi 2019) for an example in adver-
tising platforms). Rather than improving the qual-
ity of the items they create, the creators can add spu-
rious ‘‘duplicate’’ items to inventory that the recom-
mendation platforms need to explore afresh.

User manipulation: When recommenders transfer
insights across user populations, a content pro-
ducer can create fake users who strongly prefer
their items and make them ‘‘appear like’’ a sub-
population to target.

Strategic behavior: Users interactingwith personalized
recommenders over a period of time can co-adapt
in unpredictable ways. Consider a loan recommen-
dation scenario: a user might strategically alter
their behavior in many different ways to achieve
the outcomes they want (e.g., intervene to improve
their credit score); some of these interventions (e.g.,

repaying old debts) may be aligned with the sys-
tem’s goals, while others (e.g., spurious manipula-
tions of credit history) are not.

Building robust recommender systems has been an ad
hoc exercise so far. It is unclear how recommenders can be
made provably robust to various manipulations; however,
the first step will still require reasoning about the coun-
terfactuals following different interventions.We anticipate
future studies to build on the interventional view and
establish a firm foundation for robust recommender sys-
tems.
A fundamental requirement for employing the tech-

niques discussed in this article is the availability of large
quantities of logged data. The bias-variance trade-off that
IPS estimators make essentially requires a large data
regime where the variance is low enough to detect a reli-
able signal. Due to privacy concerns and GDPR regula-
tions, a recommender system may not store data for long
enough (and thus, not aggregate enough data to reach
such a regime). With the advent of federated learning—an
edge-computing framework in which training data stays
on-device—there is an opportunity to harness massive
amounts of data to create highly personalized experiences,
while protecting the user’s data security.
Moreover, differential privacy provides mechanisms to

ensure that federated learning does not reveal too much
about any particular user. Thus, combining counterfactual
techniqueswith federated learning and differential privacy
(e.g., as in (Agarwal et al. 2018; Geyer, Klein, andNabi 2017;
McMahan et al. 2018)) may yield a new class of counter-
factual learning techniques that produce recommendation
algorithms complying with data storage regulations and
offering provable privacy guarantees.
Taking stock of the journey of recommendation research

so far, we have become very good at learning black-
box models and recommending items to user popula-
tions. However we are beginning to apply these techniques
to much more complex problems involving major soci-
etal functions. Mediating the job markets of the future
has much higher stakes than recommending entertain-
ment. Nonetheless, we are optimistic that the next gener-
ation of recommender and decision-support systems will
bring transparency into many processes that are currently
human-driven. In the words of Isaac Asimov, ‘‘I could not
bring myself to believe that if knowledge presented dan-
ger, the solution was ignorance. To me, it always seemed
that the solution had to be wisdom.’’ The interventional
viewwe have espoused in this article begins by recognizing
that recommendations have consequences in the world,
and is a step towards realizing that next generation of wise
recommender systems that actively consider the impact of
their actions.
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