
� The field of adaptive robotics involves simulations
and real-world implementations of robots that
adapt to their environments. In this article, I intro-
duce adaptive environmentics—the flip side of adap-
tive robotics—in which the environment adapts to
the robot. To illustrate the approach, I offer three
simple experiments in which a genetic algorithm
is used to shape an environment for a simulated
KHEPERA robot. I then discuss at length the potential
of adaptive environmentics, also delineating sever-
al possible avenues of future research.

The reasonable man adapts himself to the
world; the unreasonable man persists to
adapt the world to himself. Therefore, all
progress depends on the unreasonable.

—George Bernard Shaw, 1903

An ant, viewed as a behaving system, is
quite simple. The apparent complexity of
its behavior over time is largely a reflec-
tion of the complexity of the environ-
ment in which it finds itself.

—Herbert A. Simon, 1969

The field of adaptive robotics studies the
ways in which robots exhibiting some
degree of autonomy adapt to their envi-

ronments. Using both simulated and real
robots, and applying techniques such as rein-
forcement learning, artificial neural networks,
genetic algorithms, and fuzzy logic, researchers
have obtained robots that display an amazing
slew of behaviors and perform a multitude of
tasks, including walking, pushing boxes, navi-
gating, negotiating an obstacle course, playing
ball, and foraging (Arkin 1998a).

To cite one typical example of an ever-grow-
ing many, Yung and Ye (1999) recently wrote:

We have presented a fuzzy navigator that
performs well in complex and unknown
environments, using a rule base that is
learned from a simple corridor-like envi-
ronment. The principle of the navigator is
built on the fusion of the obstacle avoid-
ance and goal seeking behaviors aided by
an environment evaluator to tune the
universe of discourse of the input sensor
readings and enhance its adaptability. For
this reason, the navigator has been able to
learn extremely quickly in a simple envi-
ronment, and then operate in an
unknown environment, where explo-
ration is not required at all.

This quote typifies the underlying theme of
adaptive robotics: Have a robot adapt to a
given environment. Given signifies neither that
the environment is known nor that it is static;
it means that the robot must adapt to the
quirks and idiosyncrasies imposed by the envi-
ronment—which, for its part, does nothing at
all to accommodate the puffing robot.

This fundamental principle of adaptive
robotics—the environment’s unyielding
nature—is repealed in this article. Dubbed
adaptive environmentics, the basic idea is to cre-
ate scenarios that are mirror images of those
found in adaptive robotics: The environment
adapts to a given robot.

I hasten to say that in some cases, it is not
possible to alter the environment, and in other
cases, having the robot adapt is simply the
underlying objective. Adaptive robotics has
produced many interesting results based on
these principles. I believe, however, that con-
sidering the flip-side setup brings along its own
bag of boons; this article aims to demonstrate
qualitatively the benefits of adaptive environ-
ments and present possible avenues of explo-

Articles

WINTER 2001 133

On the Origin of
Environments

by Means of Natural
Selection

Moshe Sipper

Copyright © 2001, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2001 / $2.00

AI Magazine Volume 22 Number 4 (2001) (© AAAI)

Ienne 1994),1 a small, mobile device with eight
surrounding infrared and light sensors and two
separately controllable motors (figure 1). The
simulator allows the user to write the control
program for the robot and define its environ-
ment.2

In all the experiments described herein, I
used a simple robot-control program, which
essentially implements a photophilic Braiten-
berg vehicle (Braitenberg 1984). The program
assigns speed values to both motors in accor-
dance with the readings of the six frontal light
sensors, resulting in a graded photophilic
response: The robot is attracted to light, turn-
ing ever faster as it nears a light source (figure
2). The environment is a square of (simulated)
size 1000 millimeters x 1000 millimeters (com-
pared to the size of the real KHEPERA), in which
one can place bricks and lamps (figure 3).

Because we are interested in adaptive envi-
ronmentics, it is the environment (lamps and
bricks) that will do the adapting, but the robot-
control program remains fixed. It is with this
goal in mind that I chose a simple Braitenberg
vehicle, aiming to investigate how the environ-

ration. (I further discuss the environment’s
mutability in Discussion and Future Work.)

The article is organized as follows: In the next
section, I describe the experimental setup, con-
sisting of a simulated, mobile KHEPERA robot
whose environment is evolved using a genetic
algorithm. The section entitled Results then
describes the results of three experiments
intended to illustrate the approach: (1) place
lamps evolutionarily to guide a photophilic
KHEPERA between two given points in an obsta-
cle-ridden course; (2) lay out lamps as in the first
experiment, such that both the tour time and
the number of lamps are minimized; (3) opti-
mize the lamp layout as in the second experi-
ment, with the added possibility of reposition-
ing obstacles in the form of walls. I conclude in
Discussion and Future Work by discussing issues
requiring further investigation and suggesting
several possible avenues of future research.

Experimental Setup
My experiments involved a simulated version
of the KHEPERA robot (Mondada, Franzi, and

Articles

134 AI MAGAZINE

0

1

2 3

4

5

67

A B

Figure 1. The Mobile KHEPERA Robot.
A. A diameter of 55 millimeters, a height of 30 millimeters, and a weight about 70 grams, the mobile KHEPERA robot is small enough to

perform desktop experiments. B. It has 8 infrared and light sensors and two wheels, each controlled by a separate motor.

ment will adapt to cope with it; the control
program does not change at all. The adaptive
algorithm used is a simple genetic algorithm
(Vose 1999), the parameters of which are given
in table 1 (I used the popular freeware software
by Grefenstette.3 For readers unfamiliar with
genetic algorithms, consult the sidebar.)

Results
This section presents the results of the three
experiments that illustrate my approach.

Experiment 1:
Evolving Lamp Positions
In the first experiment, the robot is placed at
the upper–left-hand corner of the brick envi-
ronment (figure 3) and should find its way to
the bottom-middle part. The evolutionary
goal is to place seven lamps that act as way
points, guiding the robot to its destination.
The genome encodes 7 lamp positions, each
defined by two 10-bit coordinates (the values
[1000, 1023] are mapped to 999); thus, it is
140 bits long.

To assign a fitness score to an individual
genome in the evolving population (that is, to
a lamp layout), the seven lamps are first added
to the environment. The photophilic robot is
placed at position (100, 100), facing down-
ward and rightward at an angle of 45 degrees
(as in figure 3). It is then run for 2000 time
steps (in one simulated time step, the robot
advances about 1 to 2 millimeters or turns on
its axis approximately 2 to 10 degrees—in
accordance with the set motor-speed values).
The fitness value, f, to be minimized is com-
puted as

where distt(x, y) is the robot’s Euclidean dis-
tance at time t from point (x, y). The fitness
function thus measures how closely the robot
passes two milestones—an intermediate one,
(650,500), and the final one, (500, 900).4

I performed a total of 52 evolutionary runs,5

the resulting average fitness of the best individ-
ual for each run being 23.1 (� = 9.9). Of these,
42 runs produced an individual with fitness in
the range 18 to 22 (that is, a total minimal dis-
tance to the two milestones of approximately 2
millimeters). Figure 4 shows the experimental
results. Figure 4a shows two evolved lamp lay-
outs and the trajectories taken by the robot.

f
t

dist

t
dist

t

t

=
=

(){ }

+
=

(){ }

1000

1
650 500

2000

1001
500 900

min ,

min , Experiment 2: Minimizing
Lamp Count and Tour Time
The lamp-layout task studied in the previous
subsection is, in fact, simple enough to carry out
manually by tinkering with lamp positions using
the simulator. The intent in this first experiment
was to provide a preliminary example of adap-
tive environmentics. Moreover, the lamp-layout
task proved a good benchmark problem for gain-
ing insight into the adaptive scenario, as do the
simple XOR computation for artificial neural
networks (Rumelhart, Hinton, and Williams
1986) and the number-of-ones fitness function
for genetic algorithms (Michalewicz 1996). In
this section, we study a veritable hard task
involving multicriterion optimization: laying

Articles

WINTER 2001 135

left_motor =
 (sensor[0]-550 + sensor[1]-550 + sensor[2]-550 +
 550-sensor[3] + 550-sensor[4] + 550-sensor[5]) / 150;
if (left_motor>=0) left_motor=left_motor+NOMINAL_SPEED;
else left_motor=left_motor-NOMINAL_SPEED;

right_motor =
 (550-sensor[0] + 550-sensor[1] + 550-sensor[2] +
 sensor[3]-550 + sensor[4]-550 + sensor[5]-550) / 150;
if (right_motor>=0) right_motor=right_motor+NOMINAL_SPEED;
else right_motor=right_motor-NOMINAL_SPEED;

Figure 2. Control Program for the Photophilic Robot,
Which Sets the Left and Right Motor Speed Values as a Function

of the Six Frontal Light Sensors (Numbered 0–5).
Light readings are in the range 500 (dark) to 50 (near light source). Each motor
can take on a speed value that is an integer in the range [–10, 10] . This control
program produces a graded photophilic behavior, with the robot turning ever
faster as it approaches a light source. The constant NOMINAL_SPEED, set to 2,
induces forward movement when the light source is directly ahead or when no
light is detected.

Parameter Value

Number of Generations 200

Population Size 100

Crossover Rate 0.9

Mutation Rate 0.01

Selection Method Rank based

Elitism Yes (best individual survives
intact to next generation)

Genome Size (bits) 140 (experiment 1)
200 (experiment 2)
200 (experiment 3)

Fitness Function Experiment dependent (see text)

Table 1. Parameters of the Genetic Algorithm.

Genetic Algorithms

The idea of applying the biological
principle of natural evolution to
artificial systems, introduced more
than four decades ago, has seen
impressive growth in the past few
years. Usually grouped under the
terms evolutionary algorithms or evo-
lutionary computation, we find the
domains of genetic algorithms,
evolution strategies, evolutionary
programming, and genetic pro-
gramming (Fogel 1995; Koza 1992;
Michalewicz 1996). Such algo-
rithms are common nowadays,
having been successfully applied to
numerous problems from different
domains, including optimization,
automatic programming, machine
learning, economics, medicine,
ecology, population genetics, and
hardware design. In this article, I
consider the evolutionary method-
ology known as genetic algorithms.

A genetic algorithm is an itera-
tive procedure that involves a pop-
ulation of individuals, each one
represented by a finite string of
symbols, known as the genome,
encoding a possible solution in a
given problem space. This space,
referred to as the search space, com-
prises all possible solutions to the
problem at hand. Genetic algo-
rithms are usually applied to spaces
that are too large to be exhaustive-
ly searched.

The standard genetic algorithm
proceeds as follows: An initial pop-
ulation of individuals is generated
at random or heuristically. Every
evolutionary step, known as a gen-
eration, the individuals in the cur-
rent population are decoded and
evaluated according to some prede-
fined quality criterion, referred to
as the fitness, or fitness function. To
form a new population (the next
generation), individuals are select-
ed according to their fitness. Many

selection procedures are currently
in use, one of the simplest being
fitness-proportionate selection, where
individuals are selected with a
probability proportional to their
relative fitness. This approach en-
sures that the expected number of
times an individual is chosen is
approximately proportional to its
relative performance in the popula-
tion. Another form of selection is
rank based, wherein the individu-
als in the population are ranked
according to fitness, and the
expected value of each individual
depends on its rank rather than its
absolute fitness (this selection
method is used to prevent prema-
ture convergence). In both cases,
high-fitness (“good”) individuals
stand a better chance of “reproduc-
ing,” but low-fitness ones are more
likely to disappear.

Selection alone cannot intro-
duce any new individuals into the
population; that is, it cannot find
new points in the search space.
New individuals are generated by
genetically inspired operators, of
which the most well known are
crossover and mutation. Crossover
is performed with probability pc

(the crossover probability or crossover
rate) between two selected individ-
uals, called parents, by exchanging
parts of their genomes (that is,
encodings) to form two new indi-
viduals, called offspring. In its sim-
plest form, substrings are ex-
changed after a randomly selected
crossover point. This operator
tends to enable the evolutionary
process to move toward promising
regions of the search space. The
mutation operator is introduced to
prevent premature convergence to
local optima by randomly sam-
pling new points in the search
space. It is carried out by flipping
bits at random, with some (usually
small) probability pm. Genetic algo-
rithms are stochastic iterative
processes that are not guaranteed
to converge. The termination con-
dition can be specified as some
fixed, maximal number of genera-
tions or as the attainment of an
acceptable fitness level. Figure A
presents the standard genetic algo-
rithm in pseudocode format.

Articles

136 AI MAGAZINE

begin GA
g := 0 {generation counter}
Initialize population P(g)
Evaluate population P(g) (that is, compute fitness values)
while not done do

g := g + 1
Select P(g) from P(g – 1)
Crossover P(g)
Mutate P(g)
Evaluate P(g)

end while
end GA

Figure A. Pseudocode of the Standard Genetic Algorithm

out lamps in the environment of figure 3 to
guide the robot from point (100, 100) to point
(500, 900), such that both the tour time and the
number of lamps are minimized.

The genome is similar in structure to that of
the previous subsection: It encodes a maximum
of 10 lamp positions, each defined by two 10-
bit coordinates and, thus, is 200 bits long. A val-
ue of either the x or y coordinate in the range
[1000, 1023] is taken to mean that the lamp in
question is not used (this representation is
more mutation immune and, thus, less brittle
than simply allotting one bit to encode a lamp’s
functional-nonfunctional status; a more so-
phisticated approach would be to use dynami-
cally modifiable genomes, such as variable-
length representations (Wu and Banzhaf 1998)
and tree encodings (Banzhaf et al. 1997).

The fitness value, f, is computed as

where distt(x, y) is the robot’s Euclidean dis-
tance at time t from point (x, y); t1

min and t2
min

are, respectively, the time steps at which the
minimal distances from the first and second
milestones are attained; Nlamps is the number of
lamps used; and �, �, and � are constants set
empirically (through trial and error) to � =
0.2, � = 1.5, � = 100.

In general, because there are three criteria
to optimize—(1) time to milestones, (2) dis-
tance to milestones, and (3) number of
lamps—which are in conflict because of the
nature of the obstacle-laden course, there is
no single optimal solution—only an ensemble
of Pareto-optimal ones. Such a multicriterion-
optimization problem might benefit from
recent advances in evolutionary algorithms
(Deb and Horn 2000), thus obviating the need
for setting �, �, and � as such.

I performed a total of 54 evolutionary runs,
observing that the genetic algorithm converged
mainly toward three types of solution: (1) 1 to 3
lamps guiding the robot straight down until it
hits the wall situated along the straight-trajecto-
ry (and fastest) path to the final goal, (2) 4 to 5
lamps guiding the robot to one of the walls, and
(3) 4 to 5 lamps guiding the robot to the goal
(Figure 4b shows two solutions of this latter
type). The resulting average fitness of the best
individual for a run was 806.06 (� = 76.03).

Experiment 3:
Interior Design and Redesign
In the final experiment, the goal is similar to
that of the previous subsection: Lay out lamps

f dist t

dist t

N

t t

t t

lamps

= (){ } +

+ { } + ()
+

=

=

min ,

min (, –

1
1000 1

1001
2000 2

650 500

500 900 1000

α

β α

γ

min

min

in the environment of figure 3 to guide the
robot from point (100,100) to point (500,900),
such that both the tour time and the number
of lamps are minimized; this time, however,
the genetic algorithm is “allowed” not only to
design (lamp layout) but also to redesign: The
five inner walls can be repositioned. The
genome is 200 bits long: The first 100 bits
encode as many as 5 lamp positions as in the
previous subsection (the maximum lamp
count was lowered from 10 to 5 because of the
results of the preceding experiment). The last
100 bits encode the upper–left-hand coordi-
nates of the five walls: 2 horizontal
walls—comprising, respectively, 8 and 9
bricks—and 3 vertical walls—comprising,
respectively, 3, 4, and 5 bricks (decoded coordi-
nates representing a wall that extends beyond
the enclosure borders are reset to the maximal
values still within range). The fitness function
is identical to that of the previous subsection.

Having performed 50 evolutionary runs, I
observed that the genetic algorithm took
advantage of the interior-redecoration option:
The resulting average fitness of the best indi-
vidual for a run was 351.04 (� = 3.33), as
opposed to 806.06 for experiment 2, with all
layouts containing a single lamp. Figure 4c

Articles

WINTER 2001 137

0,0

0,999 999,999

999,0

Figure 3. Sample Environment with Brick Walls and Two Lamps.
The KHEPERA is positioned at coordinates (x, y) = (100, 100),
facing downward and rightward at an angle of 45 degrees.

ronment (figure 3). Such scenarios provide an
interesting twist on those where the robot
avoids the obstacles: In this case, the obstacles
avoid the robot.

Discussion and Future Work
The experiments presented in the previous sec-
tion are but a first foray into adaptive environ-
mentics. There are many issues that require fur-
ther investigation as well as several open
avenues of future research that suggest them-
selves. These I discuss in this section.

Robustness
One of the major problems with adaptive tech-
niques, especially when applied to noise-abun-
dant domains such as robotics, is the robust-
ness of the obtained solutions (Ronald and
Sipper 2000). For example, a robot placed in an
evolved (or hand-designed) environment, such
as those shown in figure 4, can at times wander
off the (expected) beaten path. In some cases, a
“robustness patch” can be had quite simply by
incorporating the robustness criteria into the
cost function. This is, in fact, an advantage
with techniques such as evolutionary algo-
rithms: One can augment the cost function to
explicitly embody harsher specifications. In
these experiments, for example, the robot
could be run several times to evaluate a single
individual in the evolving population, render-
ing evolved layouts more noise immune (to
reduce computational cost, I only performed
one trial run for each evaluation).6

Control Programs
Although I used a simple photophilic robot-
control program, more sophisticated “brains”
can be imagined. One could fuse several behav-
iors, based on different sensors (infrared, ultra-
sonic, visual, tactile), in a subsumptionlike
manner (Brooks 1986). Artificial neural net-
works, fuzzy systems, case-based reasoning, and
other AI techniques are also prime candidates
for enhancing the robot’s capacities (Arkin
1998a). It would be interesting to test how envi-
ronments adapted to these more complex con-
trol schemes. (I note in passing that I also
experimented with a photophobic robot, where
lamps act as repellents rather than attractors.
Much like a cart, which is easier to pull using a
pole than to push, the photophobic robot
proved harder to work with, inducing me to
introduce the photophilic version.)

Functional-Envelope Evaluation
Given a robot controller, one often needs to
derive its functional envelope, namely, the

shows two evolved lamp layouts and the trajec-
tories taken by the robot, clearly demonstrat-
ing how the evolutionary architect has simply
chucked the walls out of the robot’s way. More
complex layout specifications can readily be
envisioned, such as requiring that the walls
form three substructures as in the original envi-

Articles

138 AI MAGAZINE

A

B

C

Figure 4. Experimental Results of Evolved Lamp Layouts
and the Robot Trajectories They Occasion.

A. Experiment 1, where the evolutionary goal is to place seven lamps to guide the
photophilic robot from the upper–left-hand point (100, 100) to the bottom-mid-
dle point (500, 900). The two milestones—(650, 500) and (500, 900)—are also
shown. The left layout has fitness f = 18.27, and the right layout has fitness f =
18.98. B. Experiment 2, where the evolutionary goal is to lay out lamps as in the
first experiment, such that both the tour time and the number of lamps are min-
imized. An evolved four-lamp solution is shown to the left, and an evolved five-
lamp solution is shown to the right. Compared with A, the trajectories are shorter,
and the layouts contain less lamps. C. Experiment 3, which is identical to the sec-
ond experiment except that the genetic algorithm is “allowed” to reposition the
five inner walls. Both layouts contain a single lamp.

environmental parameters’ ranges within
which the robot functions correctly. Questions
might include the range of lighting conditions
the robot’s sensors can handle, the maximal
angle of a corner such that the robot still
detects it as such, and infrared-reflection limita-
tions. When analytic methods prove insuffi-
cient, adaptive environmentics might aid in the
evaluation of the robot’s functional envelope.

Collective Robotics
The scenarios studied herein comprised an
environment adapting to a single robot; a nat-
ural extension would be to study multirobot
systems (Arkin 1998b). For example, given a
large surface—such as a hospital interior or a
supermarket floor—to be cleaned by an army
of robocleaners, one might evolve navigational
landmarks, evolve the positions of trash bins to
minimize the robots’ overall time spent in
garbage-disposal trips, and perhaps further
optimize the layout of electricity outlets.

Adaptive Envirobotics
With adaptive environmentics, as presented
herein, the environment is the one doing the
adapting, and the robot’s behavioral program
is immutable. This latter restriction might be
lifted, creating a system in which both the
environment and the robot coevolve (Paredis
1995; Peña-Reyes and Sipper 2000; Potter and
de Jong 2000). This approach might engender
better solutions in less time; for example, with
the ability to coadapt to its evolving environ-
ment (for example, by way of evolution or
learning), our robot might ultimately be able to
negotiate the terrain more easily. (I note in
passing that on a much grander scale—accord-
ing to the Gaia hypothesis—earth’s atmospher-
ic conditions not only bring about terrestrial
evolution but indeed coevolve with the plan-
et’s fauna and flora [Lovelock 1995]). More-
over, the robot might modify the environment
to suit itself, as with a person moving and
arranging furniture in a newly rented apart-
ment or a beaver damming a stream (Ham-
mond, Converse, and Grass 1995; Kirsh 1996).

Simulated Versus Real
There has been a long ongoing debate in robot-
ics on the issue of simulation versus the real
world. Although evolving a robot’s control pro-
gram can often be done in a real-world experi-
ment, adaptive environmentics presents a
harder case—though not an impossible one.
For example, the previous experiments could
be carried out with a real KHEPERA, a grid floor
with regularly placed lights that can be turned
on and off, and mechanically configurable

bricks. On the whole, though, it seems that (at
least for now) simulated adaptive environmen-
tics is easier, as with recent works on the evolu-
tion of physical structures (Funes and Pollack
1998) and robot morphologies (Pollack et al.
2000): Evolving every individual in the real
world is too complicated and too costly,
although the best solutions might well be
transferred from simulation to the real world
(as done by Pollack et al. [2000]). (It is worth
mentioning in the context of simulation versus
reality Jakobi’s recent work on minimal simula-
tions, where the goal is to design simulations
that are easier to construct, run faster, and
transfer readily to reality [Jakobi 1998].)

Using other Machine
Learning Techniques
Although I have concentrated herein on adapt-
ing environments using evolutionary algo-
rithms, other machine-learning methods
might be brought to bear on the problem.
Incremental approaches that are not popula-
tion based—for example, artificial neural net-
works and reinforcement learning—might rep-
resent the advantage of easier amenability to
implementation in the real world. For exam-
ple, a neural network might be used to tune the
signal of a sonar-guiding beacon or the light
level of a lamp post to adapt to the quirks of a
robot’s sensors.

Applications
Adaptive robotics finds applications in areas
where the robot is placed in a given environ-
ment and must exhibit robust behavior. The
applications of adaptive environmentics will be
found in those areas in which it is possible and
propitious to forge the environment, possibly
using standard, commercial, off-the-shelf
devices. Example applications that come to
mind are (1) placing disposal bins for a cleaning
robot such that time to bin is minimized, (2)
designing locations of repair-refueling stations
for planetary explorers, (3) laying out guidance
beacons (for example, sonar) to aid navigation
of underwater probes, and (4) designing sewer
systems to facilitate the operation of sewer
robots (Kirchner and Hertzberg 1997).

The ability to mold a robot’s environment
using adaptive techniques complements the
current effort in adaptive robotics and will
hopefully help advance the state of the art of
the field. As noted by Simon (1981, p. 75),
“goal-directed behavior simply reflects the
shape of the environment in which it takes
place….” It is sobering to reflect on the behav-
ioral system Simon (1981, p. 75) is addressing:
…in large part human goal-directed behavior

Articles

WINTER 2001 139

Rumelhart, D. E.; Hinton, G. E.; and
Williams, R. J. 1986. Learning Internal Rep-
resentations by Error Propagation. In Paral-
lel Distributed Processing, Volume 1: Founda-
tions, eds. D. E. Rumelhart, J. L.
McClelland, and the PDP Research Group,
318–362. Cambridge, Mass.: MIT Press.

Simon, H. A. 1981. The Sciences of the Arti-
ficial. 2d ed. Cambridge, Mass.: The MIT
Press.

Vose, M. D. 1999. The Simple Genetic Algo-
rithm: Foundations and Theory. Cambridge,
Mass.: MIT Press.

Wu, A. S., and Banzhaf, W., eds. 1998. Evo-
lutionary Computation (Special Issue on
Variable-Length Representation and Non-
coding Segments for Evolutionary Algo-
rithms) 6(4).

Yung, N. H. C., and Ye, C. 1999. An Intelli-
gent Mobile Vehicle Navigator Based on
Fuzzy Logic and Reinforcement Learning.
IEEE Transactions on Systems, Man, and
Cybernetics—Part B: Cybernetics 29(2):
314–321.

Moshe Sipper is a senior
lecturer in the Depart-
ment of Computer Sci-
ence at Ben-Gurion Uni-
versity, Israel, and a
visiting senior researcher
in the Logic Systems Lab-
oratory at the Swiss Fed-
eral Institute of Technol-

ogy in Lausanne. His chief interests involve
the application of biological principles to
artificial systems, including evolutionary
computation, cellular computing, bio-
inspired systems, evolvable hardware, com-
plex adaptive systems, artificial life, fuzzy
logic, and artificial neural networks. Sipper
has published over 90 research publications
in these areas as well as the book Evolution
of Parallel Cellular Machines: The Cellular
Programming Approach (Springer-Verlag,
1997). His e-mail address is sipper@cs.
bgu.ac.il.

Hammond, K. J.; Converse, T. M.; and
Grass, J. W. 1995. The Stabilization of Envi-
ronments. Artificial Intelligence 72(1–2):
305–327.

Jakobi, N. 1998. Minimal Simulations for
Evolutionary Robotics. Ph.D. dissertation,
School of Cognitive and Computing Sci-
ences, University of Sussex at Brighton.

Kirchner, F., and Hertzberg, J. 1997. A Pro-
totype Study of an Autonomous Robot Plat-
form for Sewerage System Maintenance.
Autonomous Robots 4(4): 319–331.

Kirsh, D. 1996. Adapting the Environment
Instead of Oneself. Adaptive Behavior 4(3–4):
415–452.

Koza, J. R. 1992. Genetic Programming: On
the Programming of Computers by Means of
Natural Selection. Cambridge, Mass.: The
MIT Press.

Lovelock, J. 1995. The Ages of GAIA: A Biog-
raphy of Our Living Earth. 2d ed. Oxford,
U.K.: Oxford University Press.

Michalewicz, Z. 1996. Genetic Algorithms +
Data Structures = Evolution Programs. 3d ed.
Heidelberg, Germany: Springer-Verlag.

Mondada, F.; Franzi, E.; and Ienne, P. 1994.
Mobile Robot Miniaturization: A Tool for
Investigation in Control Algorithms. In
Experimental Robotics III: The Third Interna-
tional Symposium, eds. T. Yoshikawa and F.
Miyazaki, 501–513. Lecture Notes in Con-
trol and Information Sciences Volume 200.
London: Springer-Verlag.

Paredis, J. 1995. Coevolutionary Computa-
tion. Artificial Life 2(4): 355–375.

Peña-Reyes, C.-A., and Sipper, M. 2000.
Applying Fuzzy CoCo to Breast Cancer
Diagnosis. In Proceedings of the 2000 Con-
gress on Evolutionary Computation
(CEC00), Volume 2, 1168–1175. New York:
IEEE Computer Society.

Pollack, J. B.; Lipson, H.; Ficici, S.; Funes, P.;
Hornby, G.; and Watson, R. 2000. Evolu-
tionary Techniques in Physical Robotics. In
Evolvable Systems: From Biology to Hardware,
Proceedings of the Third International Confer-
ence (ICES2000), eds. J. Miller, A. Thomp-
son, P. Thomson, and T. C. Fogarty,
175–186. Lecture Notes in Computer Sci-
ence Volume 1801. Heidelberg, Germany:
Springer-Verlag.

Potter, M. A., and De Jong, K. A. 2000.
Cooperative Coevolution: An Architecture
for Evolving Coadapted Subcomponents.
Evolutionary Computation 8(1): 1–29.

Ronald, E. M. A., and Sipper, M. 2000. Engi-
neering, Emergent Engineering, and Artifi-
cial Life: Unsurprise, Unsurprising Surprise,
and Surprising Surprise. In Artificial Life VII:
Proceedings of the Seventh International Confer-
ence on Artificial Life, eds. M. A. Bedau, J. S.
McCaskill, N. H. Packard, and S. Rasmussen,
523–528. Cambridge, Mass.: MIT Press.

simply reflects the shape of the envi-
ronment in which it takes place….

Acknowledgments
I thank Andrés Pérez-Uribe, David
Leake, and the anonymous reviewers
for helpful remarks.

Notes
1. The K-Team home page, www.k-
team.com.

2. O. Michel, KHEPERA simulator package
version 2.0, 1996, diwww.epfl.ch/lami/
team/ michel/khep-sim/SIM2.tar.gz.

3. J. J. Grefenstette, GENESIS (genetic search
implementation system) version 5.0, 1994,
www.aic.nrl.navy.mil/pub/galist/src/gene-
sis.tar.Z.

4. Preliminary experiments revealed that
an intermediate milestone was needed to
boost the evolutionary process.

5. Running on a Sun ULTRA10 at 333 mega-
hertz, a single fitness evaluation took
approximately 0.22 seconds, and an entire
run (200 generations, 100 individuals) took
about 75 minutes.

6. Note that the simulator used incorporates
random noise, and thus, the robot’s behav-
ior, even when started in the same configu-
ration, is not deterministic (see note 2).

References
Arkin, R. C. 1998a. Adaptive Behavior. In
Behavior-Based Robotics, 305–357. Cam-
bridge, Mass.: MIT Press.

Arkin, R. C. 1998b. Social Behavior. In
Behavior-Based Robotics, 359–420. Cam-
bridge, Mass.: MIT Press.

Banzhaf, W.; Nordin, P.; Keller, R. E.; and
Francone, F. D. 1997. Genetic Program-
ming—An Introduction: On the Automatic
Evolution of Computer Programs and Its Appli-
cations. San Francisco, Calif.: Morgan Kauf-
mann.

Braitenberg, V. 1984. Vehicles: Experiments
in Synthetic Psychology. Cambridge, Mass.:
MIT Press.

Brooks, R. A. 1986, A Robust Layered Con-
trol System for a Mobile Robot. IEEE Journal
of Robotics and Automation RA-2(1): 14–23.

Deb, K., and Horn, J., eds. 2000. Evolution-
ary Computation (Special Issue on Multicri-
terion Optimization) 8(2).

Fogel, D. B. 1995. Evolutionary Computation:
Toward a New Philosophy of Machine Intelli-
gence. New York: IEEE Computer Society
Press.

Funes, P., and Pollack, J. 1998. Evolutionary
Body Building: Adaptive Physical Designs
for Robots. Artificial Life 4(4): 337–357.

Articles

140 AI MAGAZINE

