
� The stand-allocation system (SAS) is an AI applica-
tion developed for the Hong Kong International
Airport (HKIA) at Chek Lap Kok. SAS uses con-
straint-programming techniques to assign parking
stands to aircraft and schedules tow movements
based on a set of business and operational con-
straints. The system provides planning, real-time
operation, and problem-solving capabilities. SAS

generates a stand-allocation plan that finely bal-
ances the objectives of the airline-handling agents,
the convenience of passengers, and the opera-
tional constraints of the airport. The system
ensures a high standard of quality in customer ser-
vice, airport safety, and use of stand resources. This
article describes our experience in developing an
AI system using standard off-the-shelf software
components. SAS is an example of how develop-
ment methodologies used to construct modern AI
applications have become fully inline with main-
stream practices.

Costing over US$20 billion to construct,
the Hong Kong International Airport
(HKIA) at Chek Lap Kok replaced the old

airport at Kai Tak, which was already one of the
world’s busiest international airports in terms
of its passenger and cargo throughput.
Although there were some initial hitches when
the new airport opened on 6 July 1998, opera-
tions quickly returned to normal within a
week’s time. Within a month, operational sta-
tistics surpassed those of the old airport—80
percent of all flights were on time or within 15
minutes of schedule, all passengers cleared
immigration within 15 minutes, and average
baggage waiting time was only 10 minutes.
During the 1998 Christmas holiday, HKIA ser-

viced about 100,000 passengers daily and
maintained equally high service standards. In
January 1999, Travel and Leisure Magazine
awarded HKIA the Critics’ Choice Award in
recognition of its levels of satisfaction and
praises received from travelers to Hong Kong.

The main responsibility of ensuring that the
airport operates smoothly and that travelers
are satisfied rests on the shoulders of the Hong
Kong Airport Authority. The airport authority
manages and controls all activities related to
airport operations. It also has the responsibility
of scheduling and managing all aircraft park-
ing and ground movements at HKIA. On a dai-
ly basis, the airport authority assigns parking
stands to aircraft based on the daily flight
schedule, rotation information, and a set of
operational constraints. It also schedules air-
craft tows to optimize the use of inner stands.
In addition, to cope with conflicts caused by
changes in actual operations, the airport
authority also needs to make real-time prob-
lem-solving decisions on stand reassignments.

The stand-allocation system (SAS) was
designed and developed to support the airport
authority’s ramp-management function. Fig-
ure 1 is a snapshot of the SAS Gantt chart dis-
playing two days of stand assignments. The
system is installed and used in the Airport
Control Center (ACC), which is located in the
control tower. SAS provides planning, real-time
management, and reactive scheduling capabil-
ities for stand management. The system sup-
ports concurrent use by multiple operators in
nonstop 24-hour-a-day operations because
HKIA is a 24-hour airport.

Because all stands at HKIA (passenger and
cargo) are centrally allocated and managed by

Articles

WINTER 2000 63

Stand-Allocation System
(SAS)

A Constraint-Based System Developed with
Software Components

Andy Hon Wai Chun, Steve Ho Chuen Chan, Francis Ming Fai Tsang, and
Dennis Wai Ming Yeung

Copyright © 2000, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2000 / $2.00

AI Magazine Volume 21 Number 4 (2000) (© AAAI)

determined by many factors—how efficient
resources are being used; how convenient it is
to the passengers; and, most importantly,
whether all safety-related criteria are met. Typ-
ically, a human operator must have several
years of experience to acquire enough knowl-
edge about airport operations before he/she
can produce a “good” quality stand-assign-
ment plan. Generating an allocation plan man-
ually not only requires a highly experienced
individual but is also very time consuming
because it requires balancing many objectives
against many possible alternatives.

Another key problem that is particularly dif-
ficult to perform manually is coping with con-
flicts caused by operational changes. For exam-
ple, flights might be delayed, aircraft might be
swapped, or there might be sudden ground
equipment failures. These events can invali-
date previous stand assignments and affect
assignments of other aircraft. In other cases,
mechanical failures or other problems might
occur after chocking off, and the aircraft might
need to return to the airport as an air return or
ground return. The ability to handle changes
and events such as these quickly and intelli-
gently and minimize impact on the rest of the
committed schedule is vital to ensuring that
the airport operates smoothly.

An AI solution allows a highly optimized
allocation plan to be produced in a reasonable
time, ensures that all operational constraints
are considered all the time, and performs prob-
lem solving in real time or close to real time.
On average, SAS produces a daily stand-alloca-
tion plan in about three minutes and performs
reactive problem solving in five seconds at
HKIA using a PENTIUM II server machine.

Application Description
SAS is designed for planning, real-time opera-
tions, and data analysis. Stand-assignment
planning is usually performed after midnight
when air traffic is light and when all the air-
lines have finalized their rotation changes. SAS

takes the daily flight schedule for the day being
planned and generates an optimized stand
allocation using an algorithm for constraint-
satisfaction problems (CSPs). Our scheduling
algorithm considers constraints related to
arrival-departure times, type of flight, aircraft
type-size, airline preferences, stand configura-
tions, and so on, in producing the stand-alloca-
tion plan. SAS also provides a set of menus and
commands to allow the operator to enter any
last-minute changes before confirming and dis-
tributing the plan. Figure 2 is an example of an
SAS to modify flight information. The operator

the airport authority, the main objective of SAS

is to be as fair as possible to all airlines and han-
dling agents while it makes efficient and safe
use of airport resources. An efficient stand-allo-
cation plan can maximize the use of stands
and, thus, permit additional flights during
peak traffic hours and holiday seasons.
Although HKIA was designed to have more
stands than the old airport, not all stands are
operational yet; part of the airport terminal
building is still under construction. Further-
more, air traffic will most likely increase once
the second runway becomes operational. Opti-
mization of stand assignment is still an impor-
tant factor at the new airport.

Another objective is to provide better service
and comfort to passengers. For example,
assigning aircraft closer to the proximity of the
immigration counters will allow passengers to
quickly exit the terminal. However, assigning
flights close to airline service counters will con-
venience transit passengers.

Maintaining some degree of consistency or
patterns in allocation from week to week or
day to day is also very important, especially for
regular flights. Thus, airlines and handling
agents will be able to perform longer-term
macroplanning with more accuracy and a cer-
tain degree of independence.

Because the airport is a 24-hour airport,
stand-allocation planning will be performed at
the same time as normal operations. The abili-
ty of the scheduling system to coordinate mul-
tiple sets of data within a multiuser environ-
ment is also very important.

The quality of a stand-allocation plan is

Articles

64 AI MAGAZINE

Figure 1. SAS Gantt Chart with Two Days of Assignments.

performing stand planning uses a separate SAS

workstation dedicated for system administra-
tive work. Other live SAS workstations load the
new plan after it is finalized.

During real-time operations, SAS operators
monitor and enter up-to-date flight statuses
such as estimated times of arrival-departure
(ETA-ETD), actual chock on-off times, and air-
craft registration. Different types of informa-
tion and status are displayed using various
icons, symbols, and color-coded shadings in
SAS. SAS automatically reevaluates all constraints
whenever any new event occurs. The main
screens used by operators are in the form of a
Gantt chart and spreadsheets. In real-time
operations, several operators and SAS worksta-
tions are involved to handle different types of
information. SAS was designed for multiuser
operations and ensures a consistent display on
all SAS workstations. All stand-related data and
information are archived for later analysis,
auditing, or report generation.

Whenever an event causes a “conflict,” SAS

alerts the operator and highlights the conflict-
ing assignments in red. For example, a delay in
departure might prevent the next aircraft from
parking, or a delay in arrival might prevent
adequate time to deplane passengers before a
scheduled tow. SAS has explanation-generation
capabilities and can give justification on
assignment penalties and reasons for conflict.
Once a conflict occurs, the operator can
request SAS to automatically resolve the conflict
using a reactive scheduling algorithm that
solves conflicts while it minimizes the impact
on the current plan.

SAS was designed to supplement the central-
ized airport system, known as the terminal
management system (TMS). TMS has basic stand-
assignment support but lacks the constraint-
based intelligence and the scope of stand-relat-
ed functions provided by SAS. Mission-critical
AI applications, such as SAS, usually have two
orthogonal sets of design criteria to satisfy: (1)
design criteria related to the AI implementa-
tion and (2) criteria related to the information
technology implementation.

From the AI point of view, the technologies
selected and used for SAS must satisfy the fol-
lowing criteria:

Robust: The knowledge representation used
must be robust enough to capture all types of
knowledge related to stand allocation. The rep-
resentation must be able to capture knowledge
on physical dimensions, geometry and layout,
proximity, and operational requirements.

Transparent: The logic or reasoning mecha-
nism used must be easy to understand and,
hence, should be reasonably similar to the log-

ic used by human operators. The system should
be able to give explanation on its actions to
improve transparency.

Optimizing: The reasoning mechanism must
be able to optimize on a given set of potentially
contradicting constraints and criteria because
the airport authority needs to satisfy the needs
of many different parties—airlines, handling
agents, passengers, and the airport itself.

Fast: The reasoning mechanism must be
highly efficient to be able to consider several
hundred constraints for each assignment.
There can be several hundred assignments a
day.

Problem solving: Because the airport is a high-
ly dynamic environment, the AI component
must be able to perform problem solving to
resolve conflicts during real operations.

From the information technology point of
view, SAS was designed to operate as a mission-
critical application, thus adding requirements
on top of those related to AI and scheduling.
The following highlights some of the key infor-
mation technology considerations:

Real-time performance: The term mission criti-
cal implies that SAS response time must be close
to real time and must be able to cope with real-
time changes quickly. The implementation
technology selected must be highly efficient.
Interpreted programming languages might per-
form poorly in this respect. Multithread sup-
port is a must.

Multiuser support: Most mission-critical oper-
ations will require several human operators

Articles

WINTER 2000 65

Figure 2. SAS Menu to Display-Modify Flight Information.

to exchange data or request services, including
the ability to easily access potentially different
types of relational or object database. The
degree of interoperability depends on the tech-
nology selected.

A Solution Based on
Object Technology
Based on the AI and information technology
requirements, we decided to select a technolo-
gy-methodology that can address all these
issues at a broad level. We needed a technology
that can be applied to all components within
our software architecture. To meet all the rigid
requirements of an intelligent AI system that is
also mission critical, we finalized on a three-
tiered distributed object architecture based on
CORBA.

There is, of course, a lot of flexibility in
selecting technologies if we are designing a
stand-alone single-tiered system. There is less
flexibility but still quite a lot if we are designing
a two-tiered system. However, when it comes
to developing a multiuser n-tiered architecture,
the choices must be carefully made. The fol-

cooperating together. The system architecture
must support the simultaneous use by several
operators and be able to synchronize all clients’
machines in real time. The implementation
platform must support some form of asynchro-
nous messaging or callback.

Scalability: Although the actual number of
SAS operators who will be making decisions will
be limited, the number of users that need to
access information from the system might
eventually be large. The technology must be
able to scale up to support a large number of
potential users.

Fault tolerance: Mission critical of course
implies the system must be available close to
100 percent of the time. The technology select-
ed must be able to support an architecture that
is fault tolerant with hardware and software
redundancy and switchover capabilities.

Load balancing: Although not really neces-
sary for the stand-allocation problem, many
mission-critical systems will require some form
of load balancing to improve performance.

Interoperability: Any mission-critical system
will need to interact with a set of other systems

Articles

66 AI MAGAZINE

Unix Server
Airport Central Database

Server Machine

Oracle
Centralized Airport

Database

MS SQL
Server

SAS Local Database to
Store Persistent Objects

Windows NT
Server

SAS Server Machine with Application
Server Containing Airport Business

Objects and Business Logic

Windows NT
Workstation

SAS Client Machine with
Gantt Chart and Spreadsheets

Figure 3. The SAS Hardware Architecture.

lowing discussion highlights some of the ratio-
nale in the technologies used to construct the
SAS application.

SAS was designed to operate within a
Microsoft NT environment with its own NT serv-
er and local Microsoft SQL server database. Fig-
ure 3 is a diagram of the SAS hardware architec-
ture. It interfaces to other external server
machines to exchange data, such as seasonal
schedules, rotation information, and stand
assignment.

To provide real-time performance, SAS was
designed as a three-tiered architecture with an
in-memory persistent business object cache
within the application server. Figure 4 shows
the three-tiered software architecture used by
SAS. We selected an object technology approach
using C++ as the implementation language
because of its efficiency and the availability of
numerous off-the-shelf software components.

SAS uses constraint programming as the
foundation for the AI component because the
stand-allocation problem can easily be mod-
eled as a constraint-satisfaction problem. Con-
straints provided in constraint programming
were expressive enough to capture all types of
knowledge required for stand allocation. Fur-
thermore, constraint-programming capabilities
were available as third-party C++ components.

Typical to most object technology–based sys-
tems, SAS uses four main types of component
software: (1) middleware components, (2) busi-

ness objects, (3) business logic, and (4) graphic
user interface (GUI) components (figure 5).
Middleware components are used in both
client and server processes. The airport busi-
ness objects are implemented as CORBA objects,
where the implementations reside on the serv-
er and then are distributed to clients as proxies.
The business logic used for stand allocation is
stored in the server process only. The user inter-
face components are used mainly for the client
GUI. Using an object technology approach, we
were able to take advantage of commercially
available best-of-breed off-the-shelf compo-
nent software to support the functions
required by SAS.

The Middleware Components
SAS uses two types of middleware component:
(1) a CORBA middleware and (2) a database mid-
dleware. We selected CORBA as the core middle-
ware technology for SAS because it has a rela-
tively low performance and implementation
overhead. CORBA also has a broad range of ser-
vices and is readily available on many plat-
forms. To provide for multiuser support, we
used push-type asynchronous messaging. For
scalability, the asynchronous messaging can
easily scale up to use IP MULTICAST. SAS uses an
off-the-shelf CORBA object request broker (ORB)
for development.1,2,3,4

The SAS application server generates a finite
set of events to notify clients of changes and

Figure 4. The SAS Three-Tiered Software Architecture.

Articles

WINTER 2000 67

SAS Client Tier

Allow users to view resource
assignment and resource deployment and

react to changes. Database forms to
allow users to modify data, constraints,

rules, and parameters.

SAS Server Tier

Proprietary scheduling algorithm.
Contains application business objects

 and business logic.

SAS Database Tier

Stores information on resources;
 knowledge on constraints,

rules, and parameters; and schedule data.

software components that supported con-
straint programming (Kumar 1992; Cohen
1990; Van Hentenryck 1989; Steele 1980). In
addition, the whole system was made multi-
thread safe using third-party multithread com-
ponents.7

Because all key business objects in SAS are
packaged as CORBA objects, there is a great
degree of interoperability with other systems
using the ORB or simple bridging techniques.
Although not all systems at HKIA are CORBA

based, a CORBA “wrapper” can easily be added to
other information technology systems to facil-
itate integration, as illustrated in figure 7.

The SAS in-memory business object cache is
created from a local Microsoft SQL server relation-
al database using the database middleware. The
database schema design is identical to that of the
HKIA’s airport operational database (AODB). All
relational tables relevant to ramp operations are
mirrored and updated regularly from the AODB.
Business objects are made persistent by having
any changes, triggered by the SAS event mecha-
nism, be automatically committed to the data-
base through the database middleware.

The Business Logic
SAS business logic consists mainly of constraints
defined using our prebuilt C++ OPTIMIZ! schedul-
ing framework. Our framework provides a soft-

updates. These events are distributed using the
CORBA event services (figure 6). This infrastruc-
ture gives us the added advantage of potential-
ly using the same mechanism to notify other
information technology systems at the airport
of stand-related events, such as stand-gate
changes or stand closures.

Most database vendors readily support some
form of fault tolerance at the third tier. Fault
tolerance in the second tier can easily be han-
dled by the CORBA middleware itself. Several
CORBA middleware products also support load-
balancing techniques. SAS also uses a database
middleware to insulate the system from the
databases we communicate with. SAS uses off-
the-shelf software components to provide
object-oriented access to relational databases.5

The Business Objects
We were at an advantage in building the SAS

application because most of the SAS business
objects were reused from an earlier system we
had built for the old Kai Tak Airport. Business
objects represented entities such as flight legs,
aircraft, stands, airlines, and handling agents.
These business objects were developed on top
of our proprietary OPTIMIZ! scheduling frame-
work that was implemented using off-the-shelf
foundation classes.6 The business objects are
made “constraint aware” by incorporating C++

Articles

68 AI MAGAZINE

User Interface
Components

Business
Objects

Business
Logic

Middleware
Components

Figure 5. Four Types of Component Software Used by SAS.

ware infrastructure on which a general class of
scheduling systems can be built. The frame-
work contains features to facilitate problem
modeling and the scheduling of algorithm
implementations. It contains software compo-
nents to represent generalized concepts such as
allocatable objects, hard constraints, soft con-
straints, and a set of scheduling algorithms.
Many generic allocation operations are built
into the framework, such as freeze, move, can-
cel, split, and swap. Other facilities include
reactive scheduling, what-if analysis, explana-
tion generation, warning message generation,
audit-trail logging, an event generator, and an
auto-testing facility.

The OPTIMIZ! framework has been used for
other projects and was ready, off the shelf, prior
to SAS development. As part of actual SAS devel-
opment, we defined constraints related to
stand allocation using the framework and
established a set of constraint parameters that
reflected actual operations at Chek Lap Kok.

The User Interface Components
The GUI for SAS client machines was developed
using highly optimized C++ graphic compo-
nents.8 The user interface consists mainly of
interactive Gantt charts and spreadsheets.
Additional administrative user interface facili-
ties were developed using Microsoft VISUAL

Articles

WINTER 2000 69

SAS
Server

Supplier

IDL

SAS
Events

Event Channel

IDL

SAS
Client

Consumer

IDL

SAS
Client

Consumer

IDL

SAS
Client

Consumer

IDL

push

push

push

push

Figure 6. CORBA Event Services Push Updates to Clients for Multiuser Support.

al, scheduling and resource-allocation prob-
lems can be formulated as a CSP that involves
the assignment of values to variables subjected
to a set of constraints.

For the stand-allocation problem, each vari-
able represents the stand assignment for one
aircraft. Each aircraft can be associated with
several variables because an aircraft might need
to be towed several times during its stay at the
airport. The domain of each variable will ini-
tially contain the set of all stands in the airport.
The CSP constraints are restrictions on how
these stands can be assigned to an aircraft. The
same set of constraints might be used during
reactive scheduling to solve dynamic prob-
lems.

SAS uses mainly two main types of constraint:
(1) hard constraints for domain reduction and
(2) soft constraints for value selection. These
constraints are implemented using constraint
components from our OPTIMIZ! scheduling
framework. The key constraints for stand allo-
cation are outlined as follows:

No overlap constraint: This constraint ensures
that no two aircraft will be assigned the same
stand at the same time. This time is measured
between the chock-on and chock-off times and
a “clearance” to allow for aircraft movements

BASIC. All SAS user interface screens follow stan-
dard WINDOWS interaction with context-sensi-
tive menus and online help, thus making the
system very user friendly. SAS training only
takes a day’s time for operators who are already
familiar with airport operations.

Putting It All Together
Figure 8 documents the final system architec-
ture once all the software components are in
place and integrated into the CORBA infrastruc-
ture. This diagram represents an orchestration
of many software components working effi-
ciently in unison. As an architecture for AI
applications, it is highly elegant and is made
possible only through the combination of
highly efficient C++, CORBA, and constraint pro-
gramming.

Uses of AI Technology
The problem of stand allocation is a typical
resource-assignment problem that can be
solved efficiently as a CSP (Kumar 1992; Cohen
1990; Van Hentenryck 1989; Steele 1980). CSP
algorithms have been used successfully to solve
a wide variety of transportation-related sched-
uling problems (Puget 1994a, 1994b). In gener-

Articles

70 AI MAGAZINE

IIOP

IDL IDL IDL

IDL

FIDS AODB

GUI
Display

Flight Leg
Information

Aircraft
Information

Display
System

Central
Database

IDL

SAS Client SAS Server ATC Server

IDLIDL

Figure 7. SAS as a CORBA-Based System.

in and out of the stand.
Stand-combination constraint: Some stands

can be combined with adjacent or nearby
stands to accommodate larger aircraft or divid-
ed into several stands to accommodate smaller
aircraft. This constraint ensures that these
stand combinations are considered during allo-
cation and that only one combination is active
at any one time.

Passenger-freighter aircraft constraint: Cargo
and passenger flights have different constraints
on where the aircraft can be allocated. For
example, an airport can disallow any passenger
flights from deplaning or boarding at cargo
areas.

International-domestic constraint: Some stands
can be dedicated to serving international or
domestic flights only. In Hong Kong, despite
the fact it is now SAR China, all flights are still
considered as international.

Stand-closure constraint: Stands can be closed
from time to time for maintenance. This con-
straint ensures that no aircraft is assigned a
stand when it is closed.

Stand-warning constraint: Sometimes stands
can have minor equipment failures that restrict
certain types of aircraft from parking there. For
example, if one of the bridges is down, a small-
er aircraft type can still use the stand for
deplaning and boarding.

Size constraint: This is a physical constraint
that ensures the assigned stand is large enough
to fit the aircraft. In Hong Kong, most stands
are large enough to fit any type of aircraft.

Adjacency constraint: Sometimes the size of an
aircraft can affect which type of aircraft can use
the adjacent stands. For example, a wide-body
aircraft might prohibit another wide body from
being assigned to adjacent stands. At CLK,
there are no adjacency constraints for this new
airport.

Aircraft-type preferences: These constraints are
soft preferences on which stands should be
assigned to which aircraft types, which might
be for convenience of aircraft maneuvering,
convenience of passenger, or ground-equip-
ment availability.

Auto-tow constraint: This constraint deter-
mines when aircraft should be towed and
where it should be towed. It ensures that air-
craft with long ground time should be towed to
temporary parking areas to optimize use of
inner stands. For example, aircraft staying on
ground for several hours will be towed to
remote stands and then towed back for depar-
ture. Longer staying aircraft, however, will be
towed to maintenance stands, which might be
farther away. The tow times are defined by sev-
eral parameters: the minimum time needed to
offload passengers, the minimum time an air-

Articles

WINTER 2000 71

SAS Application
Server

SAS Application
Server invoked
through GUI

SAS Client GUI contains
Gantt Chart and spread-
sheets displaying results

produced by the SAS
Application

Server.

The SAS Application
Server process is a
CORBA-compliant

process and resides on
the Server Machine.

The Application Server is
responsible for scheduling and

managing airport resources
within the current time window.
It is written in C++ using ILOG
and RogueWave components

and our Scheduling
Framework.

Application Server
retrieves and

updates data using
DB middleware.

SAS Client SAS
Scheduling
Interface

CORBADB Middleware

Scheduling Framework

CORBA DB
Middleware

SAS Database

Clients communicate
with database using

DB middleware.

Results of
scheduling are made

persistent in
the database.

Clients receive synchronous
and asynchronous resource
information from the server
through CORBA and CORBA

Events.

Client GUI developed
using C++, ILOG
Views, and MS

Visual Basic

SAS Client
Workstation

Used by staff for resource
management, resource

allocation, and data update.

Figure 8. Distribution of Software Components through CORBA Infrastructure.

Aircraft orientation constraint: Aircraft
assigned to remote stands can have different
options about the parking orientation of the
aircraft. This constraint can be related to con-
venience of aircraft maneuvering or safety of
deplaning passengers at nearby stands. Unlike
the old airport, at CLK, all aircraft parking ori-
entations are fixed.

Connecting passenger constraint: This con-
straint tries to optimize the allocation of air-
craft such that flights with transit passengers
will be assigned closer together to minimize
passenger walking time.

Whenever constraint violations reach a giv-
en threshold, the flights involved are high-
lighted in red. Figure 9 illustrates the delay of a
flight’s departure (CPA504), which causes a
conflict with the next flight (CPA403) that is
scheduled for the same stand (E2). There is not
enough time for the departure flight to maneu-
ver out of the stand to make room for the arriv-
ing flight. The user can invoke the SAS why
command to get an explanation for the con-
straint scoring. Figure 9 shows how different
shadings and patterns are used to indicate dif-
ferent flight statuses, such as confirmed chock
on-off and new estimated times of arrival and
departure (ETA-ETD).

SAS automatically solves conflicts with the
click of a button. It takes less than a minute to
solve all conflicts for one day. Figure 10 shows
the new schedule after a conflict has been
resolved by SAS. The conflicting flight (CPA403)
has been moved to stand S105, which is a less
desirable remote stand. Our reactive schedul-
ing algorithm solves conflicts and minimizes
the impact of changes to the original schedule,
thus reducing the amount of inconvenience to
waiting passengers.

Application Use and Payoff
SAS is used by airport authority airfield opera-
tion staff in the ACC at HKIA. Roughly 20 oper-
ators, who work in shifts, were trained on the
use of SAS. The system has been deployed since
June 1998. Because HKIA is a new airport,
quantitative measurements on performance
before and after system implementation can-
not be made. However, we can still clearly
identify the key benefits expected from using
SAS:

A dynamic organization: Producing an opti-
mized stand-allocation plan manually will take
at least half a day. The quality of the resulting
allocation plan will vary from person to person
depending on experience. SAS produces a plan
in roughly three minutes and ensures that all
constraints are considered, the allocation plan

craft should be assigned to a stand, and the
minimum time needed for boarding, and the
towing time from stand to stand.

Towing preferences: This constraint defines
preferences about where aircraft should be
towed for temporary parking. For example, cer-
tain areas can be more desirable to be used as
“pad” areas. However, there might be a simple
preference to just tow the aircraft to the nearest
outer stand in terms of towing time.

Customary stand preferences: Airlines or han-
dling agents can have preferences about which
stands their aircraft should be assigned to.
These preferences are usually related to the
location of equipment or the transit or service
counters of the airline or handling agent.

Articles

72 AI MAGAZINE

Figure 9. Explanation Facility Provided in SAS.

Figure 10. Result of Performing Reactive Scheduling.

is optimized, and high quality is maintained
each time. Because scheduling time is reduced
to only a few minutes, the airport authority
becomes more dynamic as an organization and
can handle last-minute flight and rotation
changes quickly.

Swift decision making: Humans might not
perform well under conditions of extreme
stress and pressure such as those faced during
real operations. Trying to perform problem
solving under these conditions can result in
less than ideal or even wrong decisions. SAS per-
forms reactive problem solving in about five
seconds and guarantees that the solutions are
correct each and every time. A quick response
time allows SAS operators to reply to air traffic
controllers immediately, while online if need-
ed.

Guaranteed safe and smooth operation: Because
all constraints are considered all the time, SAS

guarantees that no safety-related constraints
are overlooked. Over 100 different types of air-
craft land in Hong Kong. Each aircraft has a
slightly different physical dimension and
equipment requirement. Bridges normally can
accommodate many types of aircraft. However,
certain bridge configurations or equipment
failures can restrict some types of aircraft from
using the bridge. There is a potential that a
human operator might oversee these differ-
ences and mistakenly assign an aircraft to an
improper stand. The consequence might be a
disruption of aircraft ground traffic or, worse, a
minor collision. Even if the safety violation
was identified early on, towing the aircraft to
another stand will delay the plane by at least
half an hour. The plan produced by SAS ensures
that aircraft ground movements are safe.

Better passenger service: Being recognized as
one of the best airports in the world in terms of
traveler satisfaction is not easy. Many different
factors contribute to this success. Stand man-
agement plays an important role. For example,
a good allocation will allow passengers to get to
their destination as quickly as possible. For
arrival flights, SAS tries to assign aircraft close to
immigration counters or unmanned transport
vehicles to allow faster exit from the terminal
building. For transit flights, SAS tries to assign
aircraft close to airline transit counters. If a
stand change must be made, SAS tries to
reassign aircraft to another stand in close prox-
imity to the original assignment.

Capacity for growth: In the long term, SAS will
allow HKIA to continue to grow and accommo-
date more traffic in the coming years. Although
HKIA is a new airport with more resources, it is
still expanding. A new runway is due to begin
operations soon, and air traffic will increase.

However, construction of the second terminal
building has yet to begin. It is most likely that
the airport will gradually become resource
stressed in the years before the second terminal
opens. SAS will be able to help reduce this stress
by optimizing the utilization of stand
resources.

Application Development and
Deployment

One of the advantages of implementing an AI
application using standard off-the-shelf object-
oriented software components is that standard
object-oriented software-engineering practices
can also be followed. For SAS development, we
followed an object-oriented methodology that
is based on Rational’s UNIFIED PROCESS. User
requirements were documented using use-case
analysis, and the object-oriented design was
documented using standard UNIFIED MODELING

LANGUAGE (UML).
The coding of SAS was performed in iterative

cycles to reduce risk. Development time allo-
cated for SAS was extremely tight. To minimize
risk, we planned the iterative cycles very care-
fully. The first iteration took only two weeks.
The objective of the first development cycle
was to implement an initial prototype that test-
ed the integration of all the software compo-
nents working together within the CORBA infra-
structure. This process involved hooking up
software components from several third-party
vendors and ensuring the whole infrastructure
was solid and working from end to end.

The second iteration took another month
and a half, and the result was the first release of
SAS with basic stand-allocation capabilities. This
version was used to test the completeness of
the standing allocation knowledge. By integrat-
ing off-the-shelf software components, we were
able to dramatically shorten our development
time. We were able to further shorten the
development time by reusing business objects
and an object-oriented scheduling framework
that we had developed earlier for the old air-
port.

A third iteration took another month and
encoded the remaining user requirements. This
version was then under extensive testing and
trial use by airport authority operators with
actual data. Because time allocated for testing
was short, automatic testing software was built
that automatically simulated thousands of dif-
ferent operational scenarios. This test suite was
particularly useful early on in the project to
identify coding errors that would have taken
weeks to find if tested manually; some coding
errors can only be revealed under peculiar

Articles

WINTER 2000 73

References
Cohen, J. 1990. Constraint Logic Programming.
Communications of the ACM 33(7): 52–68.

Kumar, V. 1992. Algorithms for Constraint-Satisfac-
tion Problems: A Survey. AI Magazine 13(1): 32–44.

Puget, J.-F. 1994a. A C++ Implementation of CLP. In
ILOG Solver Collected Papers. Paris, France: ILOG SA.

Puget, J.-F. 1994b. Object-Oriented Constraint Pro-
gramming for Transportation Problems. In ILOG
Solver Collected Papers. Paris, France: ILOG SA.

Steele, Jr., G. L. 1980. The Definition and Implemen-
tation of a Computer Programming Language Based
on Constraints, Ph.D. dissertation, Artificial Intelli-
gence Laboratory, Massachusetts Institute of Tech-
nology.

Van Hentenryck, P. 1989. Constraint Satisfaction in
Logic Programming. Cambridge, Mass.: MIT Press.

Andy Chun is an associate profes-
sor in the Department of Electron-
ic Engineering at the City Univer-
sity of Hong Kong and chief
executive officer of BonVision
Technology (Hong Kong) Ltd., for-
merly Advanced Object Technolo-
gies Ltd. His interests include soft-
ware architectures, object

technologies, AI, optimization, and constraint pro-
gramming. He received a B.S. from the Illinois Insti-
tute of Technology and an M.S. and a Ph.D. in elec-
trical engineering from the University of Illinois at
Urbana-Champaign. His e-mail address is eehw-
chun@cityu.edu.hk.

Dennis Yeung is chief technical
officer of BonVision Technology
(Hong Kong). His interests are in
internet technologies, infrastruc-
ture design, software architectures,
distributed object technology, and
database systems. He received a
B.S. in information technology at
the City University of Hong Kong.

His e-mail address is dennis.yeung@aotl.com.

Francis Tsang was a software con-
sultant at Advanced Object Tech-
nologies Ltd. His interests are in
user interface design and internet
Java development. He received a
B.S. in information technology at
the City University of Hong Kong.

Steve Chan is now a senior e-com-
merce project manager at iSquare
Asia. Previously, he was a senior
software consultant at Advanced
Object Technologies Ltd. His inter-
ests are in internet technologies,
user interface design, optimiza-
tion, and distributed objects.
Chan received a B.S. in informa-

tion technology at the City University of Hong
Kong. His e-mail address is steve.chan@isquare-
asia.com.

sequences of events. The coding of SAS took
roughly 4 months elapsed time total with a
development team of 10 C++ software develop-
ers who were already familiar with all the soft-
ware components used in this project.

Maintenance
SAS was designed to be fully maintainable by
the airport authority’s own staff members. AA
senior operators maintain the knowledge base
through a set of Microsoft VISUAL BASIC database
forms. All site-specific knowledge, constraints,
parameters, and data are stored in the local
Microsoft SQL server database. Any change in
domain knowledge can be performed without
any SAS source code change. Knowledge related
to stand operations does not really change that
often. The knowledge base is usually updated
only when a new stand, airline, or aircraft type
is put into operation. Other routine database
maintenance is performed by the aiport
authority’s information technology staff mem-
bers. In addition, we provide 24-hour technical
and user support both through telephone and
on-site visit if needed.

Conclusion
This article provided an overview of the stand-
allocation system that we have designed and
built for the new Hong Kong International Air-
port at Chek Lap Kok. It described the hard-
ware and software architecture of the SAS and
the constraints of the new airport. It docu-
ments our rationale in selecting the technolo-
gies we did and our experience in constructing
an advanced AI application using off-the-shelf
software components. Hopefully, this article
provides some insights into the design and
development of mission-critical component-
based AI systems.

Acknowledgments
The authors would like to thank airport
authority operations and information technol-
ogy staff for the tremendous cooperation, sup-
port, and enthusiasm received throughout this
project.

Notes
1. www.iona.com
2. www.inprise.com
3. www.ooc.com
4. www.roguewave.com
5. www.roguewave.com
6. www.roguewave.com
7. www.roguewave.com
8. www.ilog.com

Articles

74 AI MAGAZINE

