
■ The Cornell RoboCup Project was created to teach
systems engineering concepts and practices to stu-
dents to prepare them for designing, integrating,
and maintaining highly complex systems. Anoth-
er objective of the project is to explore the inter-
play between AI, dynamics, and control theory.
This article describes the Cornell RoboCup team,
which won the RoboCup-99 small-league champi-
onship in Stockholm, Sweden.

The Cornell RoboCup Project was created
to teach systems engineering (Blanchard
and Fabrycky 1997) concepts and prac-

tices to students to prepare them for designing,
integrating, and maintaining highly complex
systems. Another objective of the project is to
explore the interplay between AI, dynamics,
and control theory. This article describes the
Cornell RoboCup team, which won the
RoboCup-99 small-league championship in
Stockholm, Sweden. The article is organized as
follows: We first describe the overall system,
followed by the AI architecture used in the
competition. We then discuss the high-fidelity
simulation environment used throughout
development, followed by our conclusions.

Overall System
The Cornell University team consists of two
mechanical designs, one for the field players
and one for the goalie (figure 1). All robots
have a unidirectional kicking mechanism pow-
ered by a solenoid (two for the goalie). The
kicking mechanism can impart a maximum
velocity of two meters a second relative to the
robot. The field players have a design mass of
1.5 kilograms, a maximum linear acceleration
of 5.1 m/s2, and a maximum linear velocity of
2.5 meters a second. The goalkeeper has a dif-
ferent design from the field players; it is
equipped with a holding and kicking mecha-
nism that can catch a front shot on goal, hold

it for an indefinite amount of time to find a
clear pass to a teammate, and execute the pass.

The main function of the on-board electron-
ics is to receive left and right wheel velocity
signals by wireless communication and imple-
ment local feedback control to ensure that the
wheel velocities are regulated about the desired
values. The on-board electronics also control
the robot kicking mechanism.

The global vision system runs at a speed of
35 hertz with a resolution of 320 � 240. A ded-
icated vision workstation identifies the ball
and robot locations as well as the orientation
of the robots. The basic algorithm used is blob
analysis (Gonzalez and Woods 1992). To deter-
mine the identity of each robot and its orien-
tation, the robots have color patches on top as
well as the team color marker (blue or yellow
Ping-Pong ball). The role-based AI is imple-
mented on a dedicated workstation.

Artificial Intelligence
In this section, we discuss the AI subsystem
and trajectory control.

Role-Based Strategy
The AI subsystem is divided into two parts: The
high-level AI takes the current game state
(robot and ball positions, velocities, and game
history) as input and determines role of each
robot, such as shooter, defender, midfielder,
and goalie. The reader is referred to Veloso et.
al. (1999), and the references therein, for a
thorough description of the application of
role-based systems in robotic soccer. Once the
role is determined, desired final conditions
such as time to target, robot orientation, and
robot velocity are computed from the current
state. More than 20 roles are preprogrammed.
The low-level AI subsystem resides on each role
and generates the trajectory to the target point
and computes the wheel velocities to transmit
to a robot.

Articles

FALL 2000 41

Cornell BIG RED
Small-Size–League Winner

Raffaello D’Andrea and Jin-Woo Lee

Copyright © 2000, American Association for Artificial Intelligence. All rights reserved. 0738-4602-2000 / $2.00

AI Magazine Volume 21 Number 3 (2000) (© AAAI)

This complex problem is solved by breaking
the problem of trajectory generation into two
parts: The first part generates a geometric path.
The second part calculates wheel velocities
such that the robot stays on the path and com-
pletes it in the allocated time.

Generating a Geometric Path Our geo-
metric path is represented by two polynomials
in the x and y coordinates of the robots. The x
coordinate polynomial is a fourth-degree poly-
nomial, and the y coordinate polynomial is
third degree.

The task is to solve for the nine polynomial
coefficients for a particular path requirement.
The nine constraints on the polynomial path
are (1) initial x coordinate, (2) initial y coordi-
nate, (3) initial orientation, (4) initial curvature
(determined by the initial left and right wheel
velocities), (5) initial speed, (6) final x coordi-
nate, (7) final y coordinate, (8) final orienta-
tion, and (9) final speed. It might seem strange
that initial speed and final speed are con-
straints because they are not geometric features
of the path, but we can actually transform
them into the geometric feature of “path stiff-
ness.” For example, if the initial robot speed is
slow, the path beginning can change curvature
quickly (that is, low initial path stiffness), but
if the initial speed is high, the path beginning
shouldn’t change curvature too quickly (that is
high initial path stiffness).

Generating Wheel Velocities Every point
on the geometric curve has a curvature value,
which defines a relationship between the left
wheel velocity vl and the right wheel velocity vr
at that point in the curve. This relationship is
as follows (Thomas and Finney 1996):

where κ is the curvature of the path, r is the
half distance between the two wheels, and v is
the forward moving velocity of the robot (fig-
ure 3). Thus, we simply need to choose a for-
ward-moving velocity of the robot to solve for
vl and vr at every point on the curve, which can
then be sampled at the cycle rate of our AI sys-
tem. Obviously, the forward-moving velocity is
constrained by the time to target as well as
mechanical limits of the robot.

Even though each run of this algorithm gen-
erates a preplanned path from beginning to

v r v rl r1 1+ ⋅() = − ⋅()κ κ

v
v vl r= +

2

y p pk
k

k
() =

=
∑β

0

3

x p pk
k

k
() =

=
∑α

0

4

Trajectory Control
The function of low-level AI is to generate tra-
jectories and control the robot to follow the
trajectories. It takes as input the current state of
the robot and the desired ending state. The cur-
rent state of a robot consists of the robot x and
y coordinates, orientation, and left and right
wheel velocities. A desired target state consists
of the final x and y coordinates, final orienta-
tion, and final velocity as well as the desired
amount of time for the robot to reach the des-
tination.

Two position feedback loops are used for the
robot’s trajectory control. The first is a local
feedback loop, the second a global feedback
loop. The local feedback loop resides on the
microcontroller of each robot and is responsi-
ble for controlling the motor position. The
global feedback control loop also has a position
feedback loop by way of the global vision sys-
tem and ensures that the robot follows the
desired trajectory. See Jones and Flynn (1993),
and the references therein, for a general
description of this two–degree-of-freedom
decomposition of the control strategy. The
desired velocity of each of the robot wheels is
generated and then transmitted to the robots
through the radio frequency communication
link at every sixtieth of a second. Figure 2
shows the schematic diagram for the entire tra-
jectory control loop.

The low-level AI needs to be efficient and
robust to imperfections in robot movement.
Currently, our algorithm can run more than 60
times a computation cycle, which is sufficient
considering that it only needs to be run at
about 4 times a cycle (for 4 robots excluding
the goalie).

Articles

42 AI MAGAZINE

Figure 1. Cornell BIG RED.

Articles

FALL 2000 43

Velocity
Generator

Trajectory
Generator

Global
Vision

PID
Controller

DC
Motor

R

T

R

T
1/S

Figure 2. Schematic Diagram for Robot Control.

rv
v

lv
r

1/k

Figure 3. Trajectory Generation.

ule into our real-world robots is then delayed
and interpreted in MATLAB before it is applied to
the model of our system, to simulate the lag
associated with our real-world system.

The simulator provided a means of testing
the AI play by play even before our robots were
fully constructed. It highlights the real-world
problems that exist in a dynamic system and
provides insight into solving these problems
within an accurate representation of our play-
ing environment. The simulator is a conve-
nient, easy to use, and fairly accurate render-
ing of our real-world system.

Conclusion
Even though our team performed well at the
competition last year, there are many subsys-
tems and components that need to be

end, it can be used to generate a new path after
every few cycles to compensate for robot drift.
The continuity of the paths generated is veri-
fied through testing. However, this algorithm
breaks down when the robot is near the target
because the polynomial path generated might
have severe curvature changes. In this case, the
polynomials are artificially created (and not
subject to the previous constraints) on a case-
by-case basis, and these polynomials are guar-
anteed to be smooth.

High-Fidelity Simulation
To provide a realistic testing platform for our
AI system, we constructed a simulation of the
playing field that models the dynamics of our
environment (figure 4).

The dynamic modeling of our system is per-
formed by a working model two-dimensional
rendering of the complete playing field.1 The
model includes two teams of five individual
players, the game ball, and the playing field.
Real-world forces and constraints are modeled,
including the motion of the tires and the iner-
tia of the robots and ball. Additionally, the
physical interactions between the players and
between each other, the ball, and the playing
environment are all modeled in the two-
dimensional environment.

The simulator accepts external input and
output every one-sixtieth of a simulated sec-
ond, the rate at which the information from
the actual vision system is updated, and robot
commands are issued. To simulate the time lag
and noise we encounter in our real-world sim-
ulation, the working-model parameters are
passed into MATLAB,2 where random noise,
error, and delay are introduced to model the
limitations of the vision system. This informa-
tion is then passed to the AI module. Informa-
tion that is typically fed back from the AI mod-

Veloso, M.; Bowling, M.; Achim, S.; Han, K.; and
Stone, P. 1999. The CMUnited-98 Champion Small
Robot Team. In RoboCup-98: Robot Soccer World Cup
II, eds. M. Asada and H. Kitano, 77–92. Berlin:
Springer Verlag.

Raffaello D’Andrea received a
B.A.Sc. in engineering physics
from the University of Toronto
and an M.S. and a Ph.D. in electri-
cal engineering from the Califor-
nia Institute of Technology. Prior
to graduate school, he was
employed as an electrical engineer
at Bell Northern Research, where

he designed packet-switching hardware. He has been
with the Department of Mechanical and Aerospace
Engineering at Cornell University since 1997, where
he is an assistant professor. His research and teaching
interests include the development of computational
tools for the robust control of complex interconnect-
ed systems and systems engineering. D’Andrea has
been the recipient of a Natural Sciences and
Engineering Research Council of Canada Centennial
Graduate Fellowship (1991–1996), the 1995 Ameri-
can Control Council O. Hugo Schuck Best Paper
Award, the 1996 IEEE Conference on Decision and
Control Best Student Paper Award, the 1999
Mechanical and Aerospace Engineering Shepherd
Teaching Prize, and the National Science Foundation
CAREER award.

Jin-Woo Lee received a B.A.Sc. in
mechanical engineering from
Seoul National University and an
M.S. and a Ph.D. in mechanical
engineering from the Korea
Advanced Institute of Science and
Technology (KAIST). He was
employed as a visiting lecturer at
Cornell University from 1998 to

2000, where he instructed the Cornell RoboCup
team. He has been with the Department of Mechan-
ical Engineering at KAIST since 2000, where he is a
member of the research staff. His research interests
include robotics and optimal control.

improved. First, we need a more robust vision
system. The current vision system performs
well when operational but is very sensitive to
the environment. In addition, it takes a long
time to calibrate the system. One of our objec-
tives for next year is to construct a reliable and
robust vision system that can be set up in less
than 30 minutes. Second, we need role coordi-
nation, which will allow us to implement set
plays. Third, we need more refined trajectory
generation, obstacle avoidance, and trajectory
control, including analytic results relating to
convergence and stability of the algorithms.
Fourth, we need to reduce the system latency.
Finally, we need innovative electromechanical
designs.

Notes
1. WORKING MODEL. Knowledge Revolution, San
Mateo, California.

2. MATLAB. The Mathworks Inc., Natick, Massachu-
setts.

References
Asada, M., and Kitano, H, editors. 1998. RoboCup-
98:Robot Soccer World Cup II. New York: Springer Ver-
lag.

Blanchard, S., and Fabrycky, W. J. 1997. System Engi-
neering and Analysis. 3d ed. New York: Prentice Hall.

Brookner, E. 1998. Tracking and Kalman Filtering Made
Easy. New York: Wiley.

Gonzalez, R. C., and Woods, R. E. 1992. Digital Image
Processing. Reading, Mass.: Addison-Wesley.

Jones, J. L., and Flynn, A. M. 1993. Mobile Robots:
Inspiration to Implementation. Reading, Mass.: Addi-
son-Wesley.

Thomas, G., and Finney, R. 1996. Calculus and Ana-
lytic Geometric. Reading, Mass.: Addison-Wesley.

Articles

44 AI MAGAZINE

Figure 4. Simulation Platform.

FALL 2000 45

46 AI MAGAZINE

Computers

Thought

ISBN 0-262-56092-5 560 pp., index.

The AAAI Press • Distributed by The MIT Press
Massachusetts Institute of Technology, 5 Cambridge Center, Cambridge, Massachusetts 02142

To order, call toll free: (800) 356-0343 or (617) 625-8569.
MasterCard and VISA accepted.

&

Edward A. Feigenbaum
& Julian Feldman

EDITORS

