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Abstract
This paper describes how the Big Data Research Center of Kyung Hee Uni-
versity and Benple Inc. developed and deployed an artificial intelligence sys-
tem to automate the quality management process for Frontec, an SME company
that manufactures automobile parts. Various constraints, such as response time
requirements and the limited computing resources available, needed to be con-
sidered in this project. Defect finders using large-scale images are expected to
classify weld nuts within 0.2 s with an accuracy rate of over 95%. Our system
uses Circular Hough Transform for preprocessing as well as an adjusted VGG
(Visual Geometry Group) model. Our convolutional neural network (CNN) sys-
tem shows an accuracy of over 99% and a response time of about 0.14 s. To embed
the CNN model into the factory, we reimplemented the preprocessing modules
using LabVIEW and had the classification model server communicate with an
existing vision inspector. We share our lessons from this experience by explain-
ing the procedure and real-world issues developing and embedding a deep learn-
ing framework in an existing manufacturing environment without implement-
ing any hardware changes.

INTRODUCTION

The manufacturing and construction industries have
always been at the forefront of innovative applications of
AI technologies (Lee et al. 1995, 1998). While AI has clearly
redefined how these industries approach planning and
scheduling, it has also enhanced less obvious elements of
the creation process.Manufacturers are required to inspect
quality in order to ensure that the quality of their products
meet customer demands. When this process is done man-
ually by employees, consistent quality inspections become
impossible as workers become tired, allowing for the pos-
sibility of inspection error. To address this problem, man-
ufacturers have been using cameras and laser sensors to
document the surface or state of their products in an effort

to automate quality inspection using statisticalmethodolo-
gies, image processing, and machine learning (Neogi et al.
2014; Xie 2008).
We introduce a Convolution Neural Network (CNN)-

based system designed to identify defects in weld nuts for a
manufacturing company located inKorea. Prior to this sys-
tem, Frontec used a vision inspector to automatically deter-
mine whether a weld nut was defective in size or whether
or not it had a thread. A problem arose, however, when
some of the company’s customers, automobile manufac-
turers such as Hyundai Motors, considered a product to be
defective if its surface was slightly damaged even if it had
no functional defects. If a flaw on the surface was found,
the customers would demand that the remaining prod-
ucts be investigated, requiring Frontec’s staffs to manually
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F IGURE 1 Manual quality inspection

F IGURE 2 The vision inspector at the factory

identify aesthetic defects, the process of which is shown in
Figure 1.
Frontec thus faces a new kind of quality management

problem, the problem of “aesthetic quality” or “appear-
ance quality.” Before Frontec decided to develop an AI-
based system to address this problem, workers had to
inspect the quality of the weld nuts manually. In addi-
tion to this manual quality inspection being unable to keep
up with the product production speed (about 100,000 per
day), the workers struggled with this tedious task, pro-
ducing inconsistent quality management inspections as a
result of eye fatigue and differing inspection criteria among
employees. It therefore became necessary to automate this
process.
Soohong Min, Frontec’s CEO, thus asked the company

that manufactured the vision inspector (Figure 2) if they
could automate the new inspection task aswell as the exist-
ing inspection of size and thread, but themanufacturerwas
unable to meet that request.
Researchers from Kyung Hee University and Benple

Inc. visited Frontec’s factory to analyze the details of the
problem. The operating process was as follows: When the

F IGURE 3 The glass plate in vision inspector

weld nuts entered the vision inspector from the produc-
tion line and arrived at the rotating circular glass plate
(Figure 3), the light sensor perceived the existence of
the product and sent a signal to the PLC (Programmable
Logic Controller). The cameras took pictures (1920 ×

1600 in size) of each product and sent them to the PC.
The PC sent the normal/defective signal to the PLC,
and an air gun then sent each product to its appropri-
ate group. The process had to take place within 0.2 s
per weld nut with a defect classification accuracy of at
least 95%. We developed a CNN-based system that satisfies
these requirements and works within these constraints.
Our adjusted VGG (Visual Geometry Group)-based model
achieves an average defect classification accuracy of at
least 99%.
By automating quality inspection, not only is it pos-

sible to reassign staff once responsible for the tir-
ing task of visual inspection to other tasks, but it
is also possible to check products more consistently,
thereby enhancing the reliability of the product. These
changes, of course, have the potential to increase the
efficiency and customer satisfaction of manufacturing
companies.
Quality inspection has usually used image processing

techniques and traditional machine learning in which
extracting typical domain characteristics requires various
kinds of preprocessing based on domain knowledge of the
structure, statistics, filters, and model-based methodolo-
gies (Neogi et al. 2014). Such manual designs of traditional
machine learning methodologies, however, may not be
appropriate in the context of today’s manufacturing com-
panies, as they usually manufacture a variety of products
and are required to switch between them frequently
(Wang et al. 2018). The performance of CNNs, on the other
hand, has become similar to or even higher than that of
humans in many domains (Weimer et al. 2016) and has
been applied in a few instances of product quality inspec-
tion (Masci et al. 2012). Since a CNN requires significant
computations, however, applying one in environments
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with limited computing infrastructure or with demanding
production requirements presents a challenge. As the
speed of a quality inspection affects production volume,
inspections need to be conducted as quickly as possible.
The development of a CNN that can ensure accuracy
while meeting the constraints and targets of a company
is thus needed if it is to be applied in a real-world factory
context.

IMAGE-BASED QUALITY INSPECTION
TECHNIQUES

A research environment and a real-world environment of
application are obviously different. A convolutional neural
network in a real-world environment does not use original
images with much noise. Therefore, the product images
obtained in such an environment must be preprocessed so
that they can be properly used in a high-performance con-
volutional neural network.
Companies have attempted to automate quality inspec-

tion using statistics, image processing, domain knowledge
rule-based systems, and machine learning, to name a few
methods. Statistical methodologies use a histogram analy-
sis and an autocorrelation analysis to measure the spatial
distribution of pixel values. Themethodology of image pro-
cessing extracts a feature through a filter or by converting
an image into another form. However, a new experiment
is always required to find a filter that is optimized for each
domain.
Hough transform (Duda and Hart 1971) is used to

detect well-defined forms, such as lines and circles. When
processing an image, a filtering operation can be per-
formed not only in a spatial domain but also in a fre-
quency domain. Filters in a frequency domain are often
used when there is a periodic characteristic or when
the patterns of images cannot be detected in a spatial
domain. The features obtained in these two domains
can be applied to supervised machine learning to clas-
sify defects using the k-Nearest Neighbor method. Tra-
ditional Support Vector Machines (SVM) have also been
used extensively for binary classification and are often
used to find defects on the surface of metal products.
SVM-based binary classifiers are assembled to implement
amulti-class classifier and used to classify defects by incor-
porating feature extractors or knowledge-based method-
ologies implemented by other preprocessing processes
such as histograms, edge extraction, and shape extraction
(Agarwal et al. 2011).
Traditional quality management methodologies require

significant domain knowledge or a preprocessing filter
optimized for the domain in order to extract features.

However, recent methodologies such as CNNs, which
were originally designed for image analysis, do not
require much knowledge of the domain. CNNs with
max-pooling showed better performance than SVMs and
multilayer perceptrons (Scholz-Reiter et al. 2012) and can
correctly classify defects with or without texture (Masci
et al. 2012).
Janssens et al. (2016) developed a CNN to reduce

the overhead involved in feature engineering to identify
defects of bearings through vibration analysis. Their CNN,
which received a Discrete Fourier Transform (DFT) motor
signal, classified the bearing states into four categories.
Wang et al. (2016) formed a spectrogram for vibration
through a Discrete Wavelet Transform (DWT) and embed-
ded it within a CNN to classify five defect types. Dong
et al. (2016) introduced the use of a CNN in distinguish-
ing six small defects that were difficult to identify using
conventional methods due to noise or resonance in the
wind turbine vibration data. Ferguson et al. (2017) devel-
oped a CNN using x-ray images of castings to identify
defect locations and types. Weimer et al. (2016) aimed
to minimize human intervention and attempted to use a
CNN for a classification in a dataset containing six good
products and six artificially generated defective ones for
a hypothetical micro manufacturing situation. Ye et al.
(2018) introduced a CNN to distinguish a normal glass
surface of a touch panel from 10 defective variations. We
use a variety of preprocessing techniques to reduce over-
head of feature engineering and employ a CNN to detect
defects that are relatively small compared to the whole
image.

APPROACH

Our project was conducted over 7 months from August of
2018 to February of 2019, as illustrated in Figure 4.
Deployment was our priority from the very beginning.

Our AI team consisted of one AI model developer and
one AI-factory system integrator who would lead and
collaborate with the vision inspector team. We first iden-
tified the specifications of the existing vision inspector in
which the AI system would be embedded and determined
the allowable load levels of vision inspector with the
development team. In the first month, we verified that
the data provided by the factory were correctly classified
and then addressed some potential issues. In the second
month, we explored methods to extract the part showing
the nut from the image data and searched for an optimal
image size to reduce the load. From the third to fifth
months, we confirmed through experiments that it would
be possible to use both a simple CNN and a deep neural
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F IGURE 4 Development process

network such as VGG. After deciding to make and deploy
a CNN, from the sixth to seventh month, we explored how
to operate the model with the limitations of the vision
inspector.
Our AI team has always emphasized the necessity of

on-site R&D, that is, research and development based
on field applications rather than solely lab experiments.
Through an on-site visit of the factory at an early stage
in the project, the AI team was able to quickly grasp
what needed to be done, and the CEO’s support also
helped shorten the time needed to address the problem
at hand. In spite of the complications usually involved
in manufacturing, the factory employees also responded
quickly whenever they could be of help. Creating an
AI model was not the ultimate end; we had to look at
how the AI model would be integrated with the factory
environment.
In the first month of developing our CNN, the task of

finding and developing an AI model posed somewhat of
a challenge. The AI team could not immediately find a
proper CNN model. Of course, a deep learning project
does not always guarantee success; usually, at the start of
a project, there is no certainty that a deep learning trial
will be successful. AI researchers, however, have no other
choice but to conduct one. When developing a deep learn-
ing system, it is especially difficult to know in advance
how much data should be collected. We do not know the
reason for a failure in a deep learning model because we
do not yet have enough data or the neural network can-
not yet solve this kind of problem. It is perhaps for these
reasons that compares deep learning to alchemy (Hutson

2018) and describes it as engineering before we had the
physics to understand what is going to work and why
(Somers 2017).

DATA

We use two kinds of photos of weld nuts taken by the
vision inspector cameras – one of the upper side surface
and one of the underside. There are two types of upper
side defects—“burst” and “struck”—and three types of
underside defects—“internal chip,” “struck,” and “pro-
trusion struck” (Figure 5). A “burst” on the upper side
surface is caused by impurities in the raw material, and
an “internal chip” on the underside surface results from
a residue generated during the thread-cutting process.
“Struck” defects are generated by the mixture of foreign
matter and debris during the process. Based on ImageNet
cases and other projects, the AI team asked the company
to prepare about one thousand images of data of each
defect category and of normal cases. As Frontec already
had a vision inspector, the company could quickly gen-
erate image data of both defective and normal products
by inserting the already-classified products into the vision
inspector and taking pictures of them with the embed-
ded PC. It is said that data issues are some of the most
common sticking-points in any AI project and that data-
wrangling of various sorts takes up about 80% of the time
consumed in a typical AI project (The Economist 2020).
In our case, the data preparation consumed only 5% of
the project duration, which we consider to be one of the
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F IGURE 6 The cameras in vision inspector

reasons our project proceeded so smoothly. We received
1,198 pictures of upper side surfaces—500 of normal sur-
faces, 431 of “burst” defects, and 267 of “struck” defects—
and 2,031 pictures of underside surfaces—500 of normal
surfaces, 658 of “internal chip” defects, 410 of “struck”
defects, and 463 of “struck protrusion” defects. Although
the numbers of pictures received were less than what we
requested, the AI team could augment the data by rotation
and flipping.

The images are taken from the two cameras built into the
vision inspector as shown in Figure 6. The captured image
is in grayscale with a size of 1920 × 1600.

PREPROCESSING OF DATA

Although the development of CNN technology signifi-
cantly lessens the preprocessing burden in image-based
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F IGURE 7 The original image data samples

quality management, it does not eliminate the work
involved in preprocessing. The actual application of auto-
mated quality control at a smart factory in a real-world
context is based on understanding, implementing, and
integrating these preprocessing methodologies. Data pre-
processing has twomain purposes. The first is to reduce the
size of the image (Circle Hough Transform and downsam-
pling), and the second is to improve the performance of the
model (DWT and PCA).

Circle Hough transform (CHT)

As seen in Figure 7, the background image is much larger
than the weld nut area.
If the original image provided is used as the input for

a learning neural network, the learning will take much
longer. We needed a module to extract the part with the
weld nut from the photo image supplied by the vision
inspector. We used a CHT algorithm to search the circu-
lar weld nut region, which would be input for the CNN.
Figure 8 shows the process of extracting only the part of
the weld nut from the supplied image.
Binary threshold processing was performed on the orig-

inal image based on a threshold value of 90 to make the
image a simplemonochrome imagewith no noise. AGaus-

sian function with a magnitude of 9 × 9 and a standard
deviation of 1.5 convoluted the result to add Gaussian blur,
thereby connecting the lines that can be broken. From the
Gaussian Blur results, we performed a CHT to find circles
with a radius of 310 to 330 pixels and determine the center
coordinates and radiuses of the circles.We cut out the orig-
inal image based on the coordinates and radiuses obtained
through the CHT and extracted only the part with the weld
nut. The final extracted image included the background
and was 750 × 750 in size.

Downsampling images

The CHT reduced the image size from 1920 × 1600 to
750 × 750 and then downsampled it to 224× 224 to account
for the resources the vision inspector consumes in the PCB
(Printed Circuit Boards) control. The performance of inter-
area interpolation was the most effective compared to that
of nearest neighbor, linear, cubic, or Lanczos interpolation,
respectively (Figure 9). The smoothest lines were formed
by inter-area interpolation.

Discrete wavelet transform (DWT)

Wavelet transform is widely used for inspections of sur-
face defects in fiber, welding, and soldered PCB boards,
etc. (Kim et al. 1999; Liu and MacGregor 2006; Mar et al.
2011). We tested Discrete Wavelet Transform to empha-
size the weld nut image components extracted by CHT.
DWT, which requires a binary orthogonal filter, is applied
to decompose the input image into 16 components of five
levels (Figure 10). The results of the decomposition are
merged into one image to be input into the CNN.

Principal component analysis (PCA)

Features are extracted using principal component analysis
(PCA), which is often used for dimensionality reduction

Binary Threshold 

Processing
Gaussian Blur

Circle Hough 

Transform

Extracted 

Weld Nut 

Part

F IGURE 8 Extracting only the weld nut part in image
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and feature extraction and is also used as input formachine
learningmodels (Ke and Sukthankar 2004; Rodrigues et al.
2010). Principal component analysis is a method of creat-
ing a new vector that can be expressed in a low dimen-
sion while maintaining the variance of the original data

through linear combination, and accordingly, the variance
of the new vector is set at a maximum (Abdi and Williams
2010).
Before CNNs were introduced, it was difficult to use

images due to limitations in hardware performance and
the requirement that input be one dimension. Therefore,
Principal Component Analysis (PCA) is often used as a
function to extract features from an image and reduce the
dimension to generate input. Using PCA, Luiz et al. (2010)
generated feature vectors from a region where a defect
could be detected by Hough transform and used them
as neural network input to classify defects with complex
shapes. In Kumar (2003), the feature vector extracted to
find defects in fibers using a multi-layer perceptron was
reduced by using the principal component analysis, and
the dimension of the feature space was reduced and used
as input for the multi-layer perceptron.We tested PCA as a
way to generate normal reference images to accentuate the
difference between defective and normal product images.
The standard image is generated by the process shown in
Figure 11.
Each two-dimensional image was flattened into one

dimension and accumulated to form one dataset. The
data was normalized to a standard normal distribution
and scaled. Assuming that the top 5% of the distribution
of the standardization result was noise, only 95% of the
components were used. An average was calculated for
the results, which were inversely transformed to obtain
a normal reference image. The difference between the
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F IGURE 1 2 Reference image and the differenced images

reference image and the input image is shown in Fig-
ure 12. (a) is a reference image generated through principal
component analysis, (b) shows the difference between the
reference image and the normal image, and (c) shows the
difference between the reference image and the image
of a defect. The difference image was input into the
CNN.

MODEL

2ConvBlock and 4ConvBlock

We defined a basic structure for the CNN from the
convolution layer to the maximum pooling layer as Con-
vBlock. The ConvBlock was stacked to test 2ConvBlock
and 4ConvBlock. One ConvBlock is composed of two
convolution layers and one pooling layer (Figure 13). For
2ConvBlock, using the parameters of VGG-16 (Simonyan
and Zisserman 2014), the size of the feature map was set
to be twice as large as the depth of the layer. Since the
input image was large, the size of the filter and the stride
nearer to the input layer were set to be larger. 4ConvBlock
doubled the number of layers in 2ConvBlock. The zero
padding layer was used to equalize the input and output
sizes of each convolution layer. The pooling size was
set to 2 × 2 and the stride to 2. The number of hidden

layers was 1, and the number of hidden nodes was fixed at
100.

VGG-16

VGG was used to superimpose sixteen structures consist-
ing of two convolution layers and one pulling layer. A struc-
ture consisted of one 3 × 3 and one 2 × 2 convolution fil-
ter with stride one, a zero padding convolution layer, and
a Max-pooling layer of zero padding. VGG has a relatively
simple structure compared to that of Inception (Szegedy
et al. 2017) or ResNet (He et al. 2016). Since processing
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speed was important when applied to the vision inspector,
the size of the original VGG-16 featuremapwas reduced by
half, and the remaining parameters were used in the same
manner (Figure 14).

EXPERIMENT FOR OPTIMAL
DEPLOYMENT

The procedure of searching for the optimal structure and
parameters for field deployment is shown in Figure 15.

Data set

To perform the defect classification experiment with the
2ConvBlock, 4ConvBlock, and VGG-16 models, we used
the image downsampled to 224 × 224 by inter-area linear
interpolation on the image extracted through CHT.
Images were divided into defect types, with 1,198 for the

upper side surface and 2,031 for the underside surface, with
20% for tests and 80% for training. The datasets were sepa-
rated so that the ratios of each classification type appeared

identical in the training and test data sets. Three typeswere
classified for the upper side and four for the underside. In
the case of training data sets, the data was doubled by ran-
dom rotation and up/down/right/left flipping.
During the first month, we were not able to find a set

of parameters that satisfied the required accuracy level. In
the second month, we were finally able to find the opti-
mal parameters for the deep learning model, and the qual-
ity control system reached an accuracy rate of 99%, higher
than our 95% target rate.

Experiment design

We tested how the classification accuracy of test data
sets would change depending on learning rate, mini-
batch size change, dropout usage, and batch normaliza-
tion using the 2ConvBlock, 4ConvBlock, and adjusted
VGG-16 models. To overcome an overfitting problem of
deep learning, we used mini-batch, batch normalization,
and dropout. Mini-batch means reducing the size of the
batch, which is a unit of data to be learned. Batch nor-
malization means scaling and shifting the distribution
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of inputs in mini-batch units. Dropout (Srivastava 2014)
has the effect of learning generalized models by arbitrar-
ily disconnecting connections between nodes at a certain
rate.
The evaluation metrics used include accuracy, recall,

precision, and F1 score. Confusion Matrix components
(e.g., TP: True Positive, FN: False Negative, FP: False Pos-
itive, TN: True Negative) were measured for each experi-
ment. Our case corresponds to situations in which defects
are relatively uncommon and the cost of a false positive is
significantly higher than the cost of a false negative.
Each experiment was classified into normal/defect clas-

sification and defect type classification. The experiment
performed 500 epochs and measured the average accuracy
and Confusion Matrix components of 400–499 epochs. In
our defect type classification experiment, the accuracy of
each type was measured and the average was recorded. To
check the frequency of cases classifying defects as normal,
the Confusion Matrix components for each defect type
were combined and used for comparison.

Optimal learning rate

We experimented with the decreasing learning rates 10−2,
10−3, 10−4, 10−5, etc. The models achieved high perfor-
mance when the learning rate was 10−4, and the learning
rates of 10−5 or less were too small to search the global
optimum point within 500 epochs. The false-positive com-
ponent of the Confusion Matrix grew smaller with smaller
learning rates. For the normal/defect classification prob-
lem, the model with the learning rate 10−5 was the small-
est, and for defect type classification, the model with 10−3
had the lowest false positive (FP) rate.

Optimal mini-batch size

A learning rate of 10−4 and mini-batch sizes of 16, 32, 64,
128, and 256 were used for the experiments. A mini-batch
size of 64 or less gave the highest performance. For nor-
mal/defect classification, all test sets were correctly classi-
fied. We found that the smaller mini-batch size, the more
accurate was the defect type classification. The majority
of the Confusion Matrix components had the lowest false-
positives at a mini-batch size of 64.

Experiment for dropout and batch
normalization

Dropout (50%) or batch normalization was applied to the
fully connected layers. For normal/defect classification,

dropout had better performance. Batch normalization was
more accurate in defect type classification. Dropout was
applied because it had a lower false-positive.

Model selection

We selected VGG-16, which was more accurate for both
classifications. The 2ConvBlockmodel had a high accuracy
rate (F1) of 0.99 or higher in the case of the normal/defect
classification, but the VGG-16 model was better suited for
the vision inspector in cases where the FP had to be lower
and the defect type had to be classified.
The VGG-16 model with a learning rate of 10−5 and a

mini-batch size of 64 showed a low FP. As PCA and DWT
were only partially accurate, we applied neither to satisfy
the required operating speed. The operating speed of the
model when using GPU was less than 0.078 s per inspec-
tion. The inspection system deployed the normal/defect
classification model first rather than the defect classifi-
cation model. Although 2ConvBlock model was simple,
it showed high accuracy for normal/defect classification,
showing that it can be used instead of VGG-16 if the GPU
cannot be used in unavoidable accidents. VGG-16 had the
lowest FP in the defect type classification. Dropout was
applied because its FP value was lower than that of batch
normalization. As neither PCA nor DWT performed con-
sistently, they were not applied in order to satisfy the
required operating speed.

DEPLOYMENT

Application environment and operation
process

The inspection systemwas constructed as described in Fig-
ure 16. The weld nuts entered the rail of vision inspec-
tor, and the products classified as normal fell from the
conveyor belt and into basket for packaging operation.
The vision inspector used three cameras to take pictures
of the upper side surface, underside surface, and thread.
The inspector was able to examine only the size of the
welded nuts and defects in the thread through an exist-
ing algorithm. The upper side and underside surfaces of
the weld nuts were inspected through the model we devel-
oped. The inspector had a built-in computer with a CPU
with the following specs: Intel i5 3.1 GHz, GPU Nvidia
GTX 1080 Ti, RAM 16GB, SSD 256GB, and OS Windows
10 64bit. The vision inspector was run by a program imple-
mented in LabVIEW (Laboratory Virtual Instrument Engi-
neering Work-bench), a system design platform used to
build automation systems in manufacturing.
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To link the developed model with the existing vision
inspector, we designed the model to operate as a server
and communicate with the inspector. The process of bring-
ing the weld nut into the inspector to make a normal or
defect decision is shown in Figure 16. Clicking the “Initial-
ization” button confirmed the connection with the server,
and pressing the “Inspection” button put the weld nut on a
rotating transparent circular plate coming in and out of the
rail. As the disc rotated, the upper side and underside sur-
faces of the weld nut were sequentially photographed. The
captured results were then transmitted to the server. The
results of the transfer were in the form of a string, which
was transformed into an image that could be utilized. The
image of the weld nut was then extracted through CHT.
When the result of the classifyingmodelwas transmitted to
the vision inspector, the inspector used the size defect deci-
sion (“size test”) and the thread defect decision (“thread
test”) to determine whether or not the product was
defective.

Interoperation with control system

The mechanism inside the vision inspector that
applied the CNN model was controlled by LabVIEW
(Figure 17).

Linking the CNN to LabVIEW was initially a problem.
TheCNN implemented throughPython-basedTensorFlow
operated as shown in Figure 18. The hardware for learning
the CNNwas a CPUwith Intel Core i9-7900X@ 3.30 GHz,
64GB RAM, and GPU Nvidia GTX1080ti 11GB. After per-
forming an action related to machine control with Lab-
VIEW, the process was reinitialized.
We then had to construct the CNN structure with check-

point information every time an operation was performed.
However, it took too much time to read because the infor-
mation of the developed VGG-16 model had a size 700MB.
The initialization, which took tens of seconds, presented
a serious problem because it took about 0.2 s for a weld
nut to travel from the camera in the vision inspector to the
front of the air gun. To address this problem, the initializa-
tion and the quality inspection processes were separated.
The inspection model was designed to operate as a client-
server separate from LabVIEW. The CNN ran on a local
server located in the inspector’s computer.

Initialization, CHT, and downsampling
process

The processes consisted of executing the upper side
and underside inspections respectively and sending and
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receiving signals using LabVIEW and TCP (Transmission
Control Protocol). Pressing the “Initialization” button in
LabVIEW passed the signal to each model for the initial-
ization. By running these quality inspection models on the
server, theCNNmodel existed in theRAMuntil the inspec-
tor system was shut down. If the initialization process was
performed only once, the CNN would thus not need to be
reinitialized. Figure 19 shows the process of preprocessing
the data to operate the model. To minimize the load, the
AI development team ran it through a LabVIEW tool that
performs CHT and downsampling.

APPLICATION USE AND PAY-OFF

When first deployed in November 2018, the expected mon-
etary benefit of implementing this change was US$20,000

per month, which consisted of a combination of labor
costs and failure costs previously incurred in manual qual-
ity inspections. The monthly labor cost was US$16,000,
which included the overtime work of four inspectors
and two packing workers, and the monthly failure cost
was US$4,000, which included the cost of inspections
at customer sites. Besides weld nuts, however, Frontec
has more than ten types of products. If AI is applied to
their other products, monthly savings could reach up to
US$200,000.
Compared to this potential benefit, the costs required

to develop such a system do not pose much of a burden.
This project also received some financial support. The
Korea Industrial Complex Corporation supported Fron-
tec’s 7-month project with a US$90,000 grant under the
4th Industrial Revolution Smart Factory Construction
program.
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Since the deployment of AI in the manufacturing
industry is still in its early stages, the AI development
team had to put in some extra effort to integrate their
developed AI model into the existing system. Our expe-
rience can serve as a reminder to AI experts of their
potential roles in deploying AI in real-world business
environments.

SUMMARY AND CONCLUSIONS

The adjusted VGG-16 model with dropout was embed-
ded in the existing vision inspector. For its deployment,
CHT and the downsampling process, once developed in
OpenCV-Python, were reimplemented in LabVIEW to sat-
isfy time and resource requirements. Our case confirms
that a CNN can perform quality inspections with con-
sistent accuracy. The company now receives feedback
on product quality in real-time while reducing worker
fatigue.
This deployment is a first step in automating product-

level quality management by developing and applying
deep learning-based AI. It is possible to extend the range
of inspectable products by collecting additional data. More
AI applications will also reduce development costs. The
company expects that the defect rate can be lowered even
further by detecting the cause of the defects early on.
The company plans to expand their application of AI to
enhance production scheduling and the preventive main-
tenance of the factory facilities. AI thus has the potential
to create jobs in a variety of sectors. Frontec now plays a
leading role in diffusing AI knowledge and application to
related manufacturing companies, especially the forging
industry.
We judge that an image-based quality management AI

system for manufacturing cannot yet be extended to vari-
ous factory environments without human intervention or
project-type services even though some companies claim
to have reached such a solution. Staff are still needed for
AI modeling tasks such as choosing a proper convolu-
tion neural network and optimizing its parameters to sat-
isfy the management requirements. Capable staff would
need to be knowledgeable of statistical inference capabil-
ities, data preprocessing techniques, and machine learn-
ing mechanisms. Some specialized solutions will reduce
the customer’s workload in data labeling, AI modeling,
andmachine training, but we still need to perform special-
ized projects to get satisfactory results. While this paper
describes only one instance of successful AI deployment
in the manufacturing industry, it is evidence of the trans-
formative potential that AI holds for quality management
systems overall.
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