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INTRODUCTION

Agents operating in complex domains often have to exe-
cute a sequence of actions to complete complex tasks.
These domains are characterized by non-deterministic
action outcomes and partial observability, with sensing,
reasoning, and actuation associated with varying levels of
uncertainty. For instance, state of the art manipulation and
grasping algorithms still cannot guarantee that a robot will
grasp a desired object (say a coffee mug). In this paper,
we use sequential decision-making (SDM) to refer to algo-
rithms that enable agents in such domains to compute
action policies that map the current state (or the agent’s
estimate of it) to an action. More specifically, we consider
SDM methods that model uncertainty probabilistically,
that is, probabilistic planning (PP) and reinforcement

Reasoning with declarative knowledge (RDK) and sequential decision-making
(SDM) are two key research areas in artificial intelligence. RDK methods reason
with declarative domain knowledge, including commonsense knowledge, that is
either provided a priori or acquired over time, while SDM methods (probabilistic
planning [PP] and reinforcement learning [RL]) seek to compute action policies
that maximize the expected cumulative utility over a time horizon; both classes of
methods reason in the presence of uncertainty. Despite the rich literature in these
two areas, researchers have not fully explored their complementary strengths.
In this paper, we survey algorithms that leverage RDK methods while making
sequential decisions under uncertainty. We discuss significant developments,
open problems, and directions for future work.

learning (RL) methods that enable the agents to choose
actions toward maximizing long-term utilities.

SDM methods, by themselves, find it difficult to make
best use of commonsense knowledge that is often avail-
able in any given domain. This knowledge includes default
statements that hold in all but a few exceptional circum-
stances, for example, “books are usually in the library but
cookbooks are in the kitchen,” but may not necessarily be
natural or easy to represent quantitatively (e.g., probabilis-
tically). It also includes information about domain objects
and their attributes, agent attributes and actions, and rules
governing domain dynamics. In this paper, we use declar-
ative knowledge to refer to such knowledge represented
as relational statements. Many methods have been devel-
oped for reasoning with declarative knowledge (RDK),
often using logics. These methods, by themselves, do not
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support probabilistic models of uncertainty toward achiev-
ing long-term goals, whereas a lot of information available
to agents in dynamic domains is represented quantitatively
to model the associated uncertainty.

For many decades, the development of RDK and SDM
methods occurred in different communities that did not
have a close interaction with each other. Sophisticated
algorithms have been developed, more so in the last cou-
ple of decades, to combine the principles of RDK and SDM.
However, even these developments have occurred in dif-
ferent communities, for example, statistical relational Al,
logic programming, RL, and robotics. Also, these algo-
rithms have not always considered the needs of agents
in dynamic domains, for example, reliability and com-
putational efficiency while reasoning with incomplete
knowledge. As a result, the complementary strengths of
RDK and SDM methods have not been fully exploited.
Also, figuring out how best to combine the principles
of RDK and SDM remains an open grand challenge in
Al, with connections to deep philosophical questions
about the representation, manipulation/use, and acquisi-
tion of knowledge in humans and machines, and about
the broader impacts of such methods. This survey paper
seeks to stimulate cross-pollination of ideas between the
communities working on different aspects of this grand
challenge, by highlighting the key achievements and open
problems. To achieve this objective while keeping the list
of related papers manageable, we limit our scope to algo-
rithms that use RDK to facilitate SDM, and focus on the
following question:

How best to reason with declarative knowledge
for sequential decision making under uncer-
tainty?

We also limit our attention to algorithms developed for
an agent making sequential decisions under uncertainty
in dynamic domains. Furthermore, to explain the key con-
cepts, we often draw on our expertise in developing such
methods for robots. Figure 1 provides an overview of the
survey’s theme'. We begin by describing some key con-
cepts related to RDK and SDM systems (“Background”),
followed by the factors we use to characterize the RDK-for-
SDM systems (“Characteristic factors”). We then describe
some representative RDK-for-SDM systems (“RDK-for-
SDM methods”) and discuss open problems in the design
and use of such systems (“Challenges and opportunities”).

BACKGROUND

We begin by briefly introducing key concepts related to the
RDK and SDM methods that we consider in this paper.

Reasoning with Declarative
Knowledge (RDK)

How best to facilitate
SDM via RDK?

Probabilistic Planning
(MDPs, POMDPs, etc)

Reinforcement Learning
(Model-free, Model-based, etc)

Sequential Decision Making (SDM) under Uncertainty

State, reward 1 L Action

FIGURE 1
declarative knowledge (RDK) for sequential decision making (SDM)

An overview of this survey: reasoning with

Reasoning with declarative knowledge

We consider a representation of commonsense knowledge
in the form of statements describing relations between
domain objects, domain attributes, actions, and axioms
(i.e., rules). Historically, declarative paradigms based on
logics have been used to represent and reason with such
knowledge. This knowledge can also be represented quan-
titatively, for example, using probabilities, but this is not
always meaningful, especially in the context of statements
of default knowledge such as “people typically drink a
hot beverage in the morning” and “office doors usually
closed over weekends.” In this survey, any mention of RDK
refers to the use of logics for representing and using such
domain knowledge for inference, planning, and diagnostics.
Planning and diagnostics in the context of RDK refer to
classical planning, that is, computing a sequence of actions
to achieve any given goal, monitoring the execution of
actions, and replanning if needed. This is different from PP
that computes and uses policies to choose actions in any
given state or belief state (“Sequential decision-making”).

Prolog was one of the first logic programming lan-
guages (Colmerauer and Roussel 1996), encoding domain
knowledge using “rules” in terms of relations and axioms.
Inferences are drawn by running a query over the relations.
An axiom in Prolog is of the form:

Head :- Body
and is read as “Head is true if Body is true.” For instance,
the following rule states that all birds can fly.
fly (B) :- bird(B)
Rules with empty bodies are called facts. For instance,

we can use “bird(tweety)” to state that tweety is a bird.
Reasoning with this fact and the rule given above, we can
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infer that “fly(tweety),” that is, tweety can fly. Research
on RDK dates back to the 1950’s, and has produced many
knowledge representation and reasoning paradigms, such
as First Order Logic, Lambda Calculus (Barendregt et al.
1984), Web Ontology Language (McGuinness et al. 2004),
and LISP (McCarthy 1978).

Incomplete knowledge

In most practical domains, it is infeasible to provide
comprehensive domain knowledge. As a consequence,
reasoning with the incomplete knowledge can result in
incorrect or sub-optimal outcomes. Many logics have
been developed for reasoning with incomplete declarative
knowledge. One representative example is Answer set pro-
gramming (ASP), a declarative paradigm (Gebser et al.
2012; Gelfond and Kahl 2014). ASP supports default nega-
tion and epistemic disjunction to provide non-monotonic
logical reasoning, that is, unlike classical logic, it allows
an agent to revise previously held conclusions. An ASP
program consists of a set of rules of the form:

a:-b, ..., ¢, not d, ..., not e.

where a...e are called literals, and not represents default
negation, that is, not d implies that d is not believed to
be true, which is different from saying that d is false.
Each literal can thus be true, false or unknown, and an
agent associated with a program comprising such rules
only believes things that it is forced to believe.

Action languages

Action languages are formal models of part of natural lan-
guage used for describing transition diagrams, and many
action languages have been developed and used in robotics
and AL This includes STRIPS (Fikes and Nilsson 1971),
PDDL (Haslum et al. 2019), and those with a distributed
representation such as AL, (Gelfond and Inclezan 2013).
The following shows an example of using STRIPS to model
an action stack whose preconditions require that the robot
be holding object X and that object Y be clear. After execut-
ing this action, object Y is no longer clear and the robot is
no longer holding X.

operator (stack(X,Y),
Precond [holding(X),clear(Y)],
Add [on(X,Y),clear(X)],

Delete

[holding(X) ,clear(Y)])

Given a goal, for example, on(by, b,), which requires
block b; to be on b,, the action language description,

along with a description of the initial/current state, can be
used for planning a sequence of actions that achieve this
goal. Action languages and corresponding systems have
been widely used for classical planning (Ghallab, Nau,
and Traverso 2016), aiming at computing action sequences
toward accomplishing complex tasks that require more
than one action.

Hybrid representations

Logic-based knowledge representation paradigms typi-
cally support Prolog-style statements that are either true
or false. By themselves, they do not support reason-
ing about quantitative measures of uncertainty, which is
often necessary for the interactions with SDM paradigms.
As a result, many RDK-for-SDM methods utilize hybrid
knowledge representation paradigms that jointly sup-
port both logic-based and probabilistic representations of
knowledge; they do so by associating probabilities with
specific facts and/or rules. Over the years, many such
paradigms have been developed; these include Markov
Logic Network (MLN) (Richardson and Domingos 2006),
Bayesian Logic (Milch et al. 2006), probabilistic first-order
logic (Halpern 2003), PRISM (Gorlin, Ramakrishnan, and
Smolka 2012), independent choice logic (Poole 2000),
ProbLog (Fierens et al. 2015; Raedt and Kimmig 2015),
KBANN (Towell and Shavlik 1994), and P-log, an extension
of ASP (Baral, Gelfond, and Rushton 2009). We will discuss
some of these later in this paper.

Sequential decision-making

We consider two classes of SDM methods: PP (Puterman
2014) and RL (Sutton and Barto 2018), depending on the
availability of world models. A common assumption in
these methods is the first-order Markov property, that is,
the next state is assumed to be conditionally independent
of all previous states given the current state. Also, actions
are assumed to be nondeterministic, that is, they do not
always provide the expected outcomes, and the state is
assumed to be fully or partially observable. Unlike classical
planning (see “Reasoning with declarative knowledge”),
these methods compute and use a policy that maps each
possible (belief) state to an action to be executed in that
(belief) state.

Probabilistic planning

If the state is fully observable, PP problems are often for-
mulated as a Markov decision process (MDP) described
by a four-tuple (S, A, T, R) whose elements define the set
of states, set of actions, the probabilistic state transition
function T : S XA XS — [0,1], and the reward specifi-
cation R : S X A X S’ — R. Each state can be specified
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by assigning values to a (sub)set of domain attributes.
The MDP is solved to maximize the expected cumulative
reward over a time horizon, resulting in a policy 7 : s — a
that maps each state s € S to an action a € A. Action exe-
cution corresponds to repeatedly invoking the policy and
executing the corresponding action.

If the current world state is not fully observable, PP
problems can be modeled as a partially observable MDP
(POMDP) (Kaelbling, Littman, and Cassandra 1998) that
is described by a six-tuple (S,.4,Z,T,0,R), where Z is
a set of observations, and O : S X A XZ — [0,1] is the
observation function; other elements are defined as in the
case of MDPs. The agent maintains a belief state, a proba-
bility distribution over the underlying states. It repeatedly
executes actions, obtains observations, and revises the
belief state through Bayesian updates:

0(s',a,0) ¥ s T(s, a,s")b(s)

by = pr(ola, b)

where b, s, a, and o represent belief state, state, action,
and observation, respectively; and pr(o|a, b) is a normal-
izer. The POMDP is also solved to maximize the expected
cumulative reward over a time horizon; in this case, the
output is a policy = : b — a that maps beliefs to actions.

Reinforcement learning

Agents frequently have to make sequential decisions with
an incomplete model of domain dynamics (e.g., without R,
T, or both), making it infeasible to use classical PP meth-
ods. Under such circumstances, RL algorithms can be used
by the agent to explore the effects of executing different
actions, learning a policy (mapping states to actions) that
maximizes the expected cumulative reward as the agent
tries to achieve a goal (Sutton and Barto 2018). The under-
lying formulation is that of an MDP or a formulation that
reduces to an MDP under certain constraints.

There are at least two broad classes of RL methods:
model-based and model-free. Model-based RL methods
enable an agent to learn a model of the domain, for exam-
ple, R(s, a) and T(s, a, s’) in an MDP, from the experiences
obtained by the agent by trying out different actions in dif-
ferent states. Once a model of the domain is learned, the
agent can use PP methods to compute an action policy.
Model-free RL methods, on the other hand, do not learn an
explicit model of the domain; the policy is instead directly
computed from the experiences gathered by the agent. The
standard approach to incrementally update the value of
each state is the Bellman equation:

Vg1 (8) = Z (als) Z pr(s’,r|s,a)[r + yu(s)],Vs € S

where v(s) is the value of state s, and y is a discount fac-
tor. It is also possible to compute the values of state-action
pairs, that is, Q(s, a), from which a policy can be computed.

Many algorithms have been developed for model-based
and model-free RL; for more details, please see Sutton
and Barto (2018). More recent work has also explored the
integration of deep neural networks (DNNs) with RL, for
example, to approximate the value function (Mnih et al.
2015), and deep policy-based methods, for example, (Schul-
man et al. 2015; 2017). This survey focuses on the interplay
between SDM (including RL) and RDK methods; the prop-
erties of individual RL methods (or SDM methods) are out
of scope.

CHARACTERISTIC FACTORS

Before we discuss RDK-for-SDM algorithms and systems,
we describe the factors that we use to characterize these
systems. The first two factors are related to the represen-
tation of knowledge and uncertainty, and the next three
factors are related to reasoning with this knowledge and
the underlying assumptions about domain dynamics and
observability. The final three factors are related to the
acquisition of domain knowledge. Unless stated otherwise,
the individual factors are orthogonal to each other, that is,
the choice of a particular value for one factor can (for the
most part) be made independent of the choice of value for
the other factors.

Representational factors

We introduce two characteristic factors related to the
representation of knowledge and uncertainty in RDK-
for-SDM methods. The first factor is based on the rela-
tionships between the different descriptions of knowledge
and uncertainty considered in these methods, and the
second factor is based on the abstractions considered in
this representation.

Factor 1: Representation of descriptions

The first factor categorizes the methods that leverage RDK
for SDM into two broad classes based on how they rep-
resent logical and probabilistic descriptions of knowledge
and uncertainty.

Methods in the first group use a unified representa-
tion that is expressive enough to serve as the shared repre-
sentation paradigm of both RDK and SDM. For instance,
one can use a joint probabilistic-logical representation of
knowledge and the associated uncertainty with probabilis-
tic relational statements to describe both the beliefs of
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RDXK, and the rules of SDM governing domain dynamics.
These approaches provide significant expressive power,
but manipulating such a representation (for reasoning or
learning) imposes a significant computational burden.

Methods in the second group use a linked repre-
sentation to model the components of RDK and SDM.
For instance, information closer to the sensorimotor level
can be represented quantitatively to model the uncer-
tainty in beliefs, and logics can be used for representing
and reasoning with a more high-level representation of
commonsense domain knowledge and uncertainty. These
methods trade expressivity, correctness guarantees, or both
for computational speed. For instance, to save compu-
tation, sometimes probabilistic statements with residual
uncertainty are committed as true statements in the logical
representation, potentially leading to incorrect inferences.
Methods in this group can vary substantially based on if
and how information and control are transferred between
the different representations. For instance, many methods
based on a linked representation switch between a logical
representation and a probabilistic representation depend-
ing on the task to be performed; other methods address
the challenging problem of establishing links between
the corresponding transition diagrams to provide a tighter
coupling.

Factor 2: Knowledge abstraction

RDK-for-SDM methods often reason about knowledge at
different granularities. Consider a mobile delivery robot. It
can reason about rooms and cups to compute a high-level
plan for preparing and delivering a beverage, and reason
about geometric locations at finer granularities to grasp
and manipulate a given cup.

The second factor used to characterize these methods
is the use of different abstractions within each compo-
nent or in different components, for example, a hierarchy
of state-action spaces for SDM, or a combination of an
abstract representation for logic-based task planning and
a fine-resolution metric representation for probabilistic
motion planning. The use of different abstractions makes
it difficult to identify and use all the relevant knowledge to
make decisions; note that this challenge is present in the
“linked representation” methods discussed in the context
of Factor 1.

Methods that explore different abstractions of knowl-
edge often encode rich domain knowledge (including
cognitive models) and perform RDK at an abstract level,
using SDM for selecting and executing more primitive (but
more precise) actions at a finer granularity. Despite the
variety of knowledge representation paradigms, we still
maintain the constraint that we only consider algorithms
with knowledge being represented declaratively.

Reasoning factors

Given a representation of knowledge, an agent needs to
reason with this knowledge to achieve desired goals. Here,
we are particularly interested in if and how knowledge of
domain dynamics is used in the RDK and SDM compo-
nents, and the effect of state representation on the choice
of methods. These issues are captured by the following
three factors.

Factor 3: Dynamics in RDK

RDK algorithms manipulate the underlying representa-
tions for different classes of tasks; in this paper, we
consider inference, classical planning, and diagnostics.
Among these tasks, inference requires the agent to draw
conclusions based on its current beliefs and domain
knowledge, while planning and diagnostics require RDK
algorithms to reason about changes caused by actions
executed over a period of time.

We introduce the third factor to categorize the RDK-for-
SDM methods into two groups based on whether the RDK
component reasons about actions and change. Meth-
ods that perform inference based on a particular snapshot
of the world are in one category, whereas methods for
classical planning and diagnostics that require decisions
to be made over a sequence of time steps are in the
other category. These choices may be influenced by the
specific application or how RDK is used for SDM meth-
ods. For instance, RDK-for-SDM methods that leverage
domain knowledge to improve the exploration behaviors
of RL agents require the ability to reason about actions
and change.

Factor 4: World models in SDM

The fourth factor categorizes SDM methods, that is, PP and
RL methods, depending on the availability of world mod-
els. When world models are available, we can construct
Dynamic Bayesian Networks (DBNs), and compute action
policies. When world models are not available, the agent
can interact with its environment and learn action policies
through trial and error, and this can be formulated as an
RL problem. Among the RL methods, model-based meth-
ods explicitly learn the domain dynamics (e.g., T and R)
and use PP methods to compute the action policy. Model-
free RL methods, on the other hand, enable agents to
directly use their experiences of executing different actions
to compute the policies for mapping states to actions.

Factor 5: State or belief state in SDM

SDM methods involve an agent making decisions based
on observing and estimating the state of the world. A key
distinction here is whether this state is fully observable or
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partially observable, or equivalently, whether the observa-
tions are assumed to be complete and correct. The fifth
factor categorizes the SDM methods based on whether
they reason assuming full knowledge of state after action
execution, or assume that the true state is unknown and
reason with belief states, for example, probability distri-
butions over the underlying states (Kaelbling, Littman,
and Cassandra 1998), and implicit representations com-
puted with neural networks (Hausknecht and Stone 2015).
Among the SDM formulations considered in this paper,
MDPs map to the former category, whereas POMDPs map
to the latter category.

Note that there are other distinguishing characteristics
of reasoning systems (of RDK-for-SDM systems) that we
do not explore in this paper. For instance, reasoning in
such systems often includes a combination of active and
reactive processes, for example, actively planning and exe-
cuting a sequence of actions to achieve a particular goal in
the RDK component, and computing a probabilistic pol-
icy that is then used reactively for action selection in the
SDM component.

Knowledge acquisition factors

Since comprehensive domain knowledge is often not avail-
able, RDK-for-SDM methods may include an approach for
knowledge acquisition and revision. We introduce three
characteristic factors related to how knowledge is acquired
and the source of this knowledge.

Factor 6: Online versus offline acquisition

Our sixth factor categorizes methods based on whether
they acquire knowledge online or offline. Methods in the
first category interleave knowledge acquisition and task
completion, with the agent revising its knowledge while
performing the task based on the corresponding obser-
vations. In comparison, methods in the second category
decouple knowledge acquisition and task completion, with
the agent extracting knowledge from a batch of observa-
tions in a separate phase; this phase occurs either before
or after the assigned task is completed. For the purposes
of this survey, RDK-for-SDM methods that do not sup-
port knowledge acquisition are grouped in the “offline”
category for this characteristic factor.

Factor 7: Active versus reactive acquisition

RDK-for-SDM methods are categorized by our seventh fac-
tor based on whether they explicitly execute actions for
acquiring knowledge. Some methods use an active acqui-
sition approach, which has the agent explicitly plan and
execute actions with the objective of acquiring previously
unknown knowledge and revising existing knowledge.

These actions take the form of exploring the outcomes
of actions and extracting information from the observa-
tions, or soliciting input from humans. Active acquisition
is often coupled with active or reactive reasoning, for
example, for computing exploration plans. Other RDK-for-
SDM methods use a reactive acquisition approach in
which knowledge acquisition is a secondary outcome. As
the agent is executing actions to perform the target task(s),
it ends up acquiring knowledge from the corresponding
observations; this may, in turn, trigger active acquisition.

Factor 8: Knowledge source

The eighth factor categorizes RDK-for-SDM methods based
on the source of the declarative domain knowledge. In
some methods, this knowledge is obtained by direct
human encoding, for example, in the form of logi-
cal statements written by humans to represent facts and
axioms. This is a common source of domain knowledge,
especially that which is encoded initially. The knowl-
edge can also be acquired through agent interaction, for
example, agents can directly perceive their working envi-
ronments through cameras and extract information using
computer vision methods to populate the knowledge base.
Note that some methods use a combination of sources,
for example, agents extract information from some Web
sources provided by humans, or agents solicit information
through dialog with humans. Knowledge directly encoded
by domain experts is often more reliable but it may require
considerable time and effort from these experts. In compar-
ison, the human effort required to enable agents to acquire
knowledge is typically much less, but this knowledge is
often less reliable.

Summary of characteristic factors

Methods that use RDK for SDM can be mapped to the
space whose axes are the factors described above; these
factors are also summarized in Figure 2. Some methods
can include combinations of the factors related to rep-
resentation, reasoning, and/or knowledge acquisition.
For instance, a given system could support active online
knowledge acquisition while reasoning with domain
dynamics and belief states, whereas another system could
support interactive knowledge acquisition from humans
while reasoning about actions and change based on a
linked representation. Methods that couple representa-
tion, reasoning, and learning provide key benefits, for
example, reasoning can be used to trigger, inform, and
guide efficient knowledge acquisition. However, they
also present some challenges, for example, in suitably
reconciling differences between existing knowledge and
learned knowledge. These advantages and challenges
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3, Dynamics in RDK:
Reason about actions?

Knowledge update via SDM?

Unified for RDK and SDM?

6, Knowledge Acquisition: 1, Knowledge Representation: 4, World Models in SDM:
Leaming or planning?

Reasoning with Declarative
Knowledge (RDK)

Reasoning results

Knowledge update

™

Sequential Decision
Making (SDM)

1

Where’s knowledge from? Active or reactive?

8, Knowledge Source: 7, Knowledge Acquisition: 2, Knowledge Abstraction:
Hierarchical?

5, Observability in SDM:
Full or partial?

FIGURE 2

Characteristic factors in the development of RDK-for-SDM methods. The individual factors are discussed in details in

“Characteristic factors,” and are also used for the discussions of representative algorithms in “RDK-for-SDM methods”

are discussed below in the context of representative
RDK-for-SDM methods.

RDK-FOR-SDM METHODS

In this section, we review some representative RDK-
for-SDM systems by grouping them based on their
primary contributions. First, “Representation-focused
systems” discusses some systems that primarily focus
on the knowledge representation challenges in RDK-
for-SDM. “Reasoning-focused systems” and “Knowledge
acquisition-focused systems” then describe RDK-for-SDM
systems in which the key focus is on the underlying reason-
ing and knowledge acquisition challenges, respectively.
Note that this grouping is based on our understanding
of the key contributions of each system; many of these
systems include contributions across the three groups as
summarized in Table 1.

Representation-focused systems

As stated in “Reasoning with declarative knowledge,”
many generic hybrid representations have been developed
to support both logical and probabilistic reasoning with
knowledge and uncertainty.

Unified RDK-for-SDM representations

Developing a unified representation for RDK and SDM
maps to developing a unified representation for logical
and probabilistic reasoning, which has been a fundamental
problem in robotics and AI for decades. Frameworks and
methods based on unified representations provide signif-
icant expressive power, but they also impose a significant

computational burden despite the ongoing work on devel-
oping more efficient (and often approximate) reasoning
algorithms for such unified paradigms.

Statistical relational Al

Some of the foundational work in this area has built
on work in statistical relational learning/Al. These RDK-
for-SDM methods typically use unified representations
and differ based on the underlying design choices. For
instance, MLNs combine probabilistic graphical models
and first-order logic, assigning weights to logic formu-
las (Richardson and Domingos 2006); these have been
extended to Markov logic decision networks by associating
logic formulas with utilities in addition to weights (Nath
and Domingos 2009). In a similar manner, Probabilistic
Logic (ProbLog) programming annotates facts in logic pro-
grams with probabilities and supports efficient inference
and learning using weighted Boolean formulas (Raedt and
Kimmig 2015). This includes an extension of the basic
ProbLog system, called Decision-Theoretic (DT)ProbLog,
in which the utility of a particular choice of actions is
defined as the expected reward for its execution in the
presence of probabilistic effects (den Broeck et al. 2010).
Another example of an elegant (unified) formalism for
dealing with degrees of belief and their evolution in the
presence of noisy sensing and acting, extends situation cal-
culus by assigning weights to possible worlds and embed-
ding a theory of action and sensing (Bacchus, Halpern,
and Levesque 1999). This formalism has been extended to
deal with decision making in the continuous domains seen
in many robotics applications (Belle and Levesque 2018).
Others have developed frameworks based on unified repre-
sentations specifically for decision theoretic reasoning, for
example, first-order relational POMDPs that leverage sym-
bolic programming for the specification of POMDPs with
first-order abstractions (Juba 2016; Sanner and Kersting
2010).
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Classical planning

RDK-for-SDM systems based on unified representa-
tions have also built on tools and methods in classical
planning. Examples include PPDDL, a probabilistic
extension of the action language PDDL, which retains
the capabilities of PDDL and provides a semantics
for planning problems as MDPs (Younes and Littman
2004), and Relational Dynamic Influence Diagram Lan-
guage (RDDL) that was developed to formulate factored
MDPs and POMDPs (Sanner 2010). In comparison with
PPDDL, RDDL provides better support for modeling
concurrent actions and for representing rewards and
uncertainty quantitatively.

Logic programming

RDK-for-SDM systems with a unified representation have
also been built based on logic programming frameworks.
One example is P-log, a probabilistic extension of ASP
that encodes probabilistic facts and rules to compute
probabilities of different possible worlds represented as
answer sets (Baral, Gelfond, and Rushton 2009). P-log
has been used to specify MDPs for SDM tasks, for exam-
ple, for robot grasping (Zhu 2012). More recent work
has introduced a coherence condition that facilitates the
construction of P-log programs and proofs of correct-
ness (Balai, Gelfond, and Zhang 2019). One limitation of
P-log, from the SDM perspective, is that it requires the
horizon to be provided as part of the input. The use of
P-log for PP with infinite horizons requires a significant
engineering effort.

Linked RDK-for-SDM representations

As stated earlier in the context of Factor 1in “Representa-
tional factors,” RDK-for-SDM systems with linked (hybrid)
representations trade expressivity or correctness guaran-
tees for computational speed, an important consideration
if an agent has to respond to dynamic changes in com-
plex domains. These methods often also use different levels
of abstraction and link rather than unify the correspond-
ing descriptions of knowledge and uncertainty. This raises
interesting questions about the choice of domain variables
in each representation, and the transfer of knowledge and
control between the different reasoning mechanisms. For
instance, a robot delivering objects in an office building
may plan at an abstract level, reasoning logically with
rich commonsense domain knowledge (e.g., about rooms,
objects, and exogenous agents) and cognitive theories. The
abstract actions can be implemented by reasoning prob-
abilistically at a finer resolution about relevant domain
variables (e.g., regions in specific rooms, parts of objects,
and agent actions).

//A | 257
Switching systems

The simplest option for methods based on linked represen-
tations is to switch between reasoning mechanisms based
on different representations for different tasks. One exam-
ple is the switching planner that uses either a classical first-
order logic planner or a probabilistic (decision-theoretic)
planner for action selection (Gobelbecker, Gretton, and
Dearden 2011). This method used a combination of the
Fast-Downward (Helmert 2006) and PPDDL (Younes and
Littman 2004) representations. Another approach uses
ASP for planning and diagnostics at a coarser level of
abstraction, switches to using probabilistic algorithms for
executing each abstract action, and adds statements to
the ASP program’s history to denote success or failure of
action execution; this approach has been used for multi-
ple robots in scenarios that mimic manufacturing in toy
factories (Saribatur, Patoglu, and Erdem 2019).

Tightly coupled systems

There has been some work on generic RDK-for-SDM
frameworks that represent and reason with knowledge and
beliefs at different abstractions, and “tightly couple” the
different representations and reasoning mechanisms by
formally establishing the links between and the attributes
of the different representations. These methods are often
based on the principle of refinement (Freeman and Pfen-
ning 1991). This principle has also been explored in
fields such as software engineering and programming lan-
guages (Lovas 2010; Lovas and Pfenning 2010), but without
any theories of actions and change that are important
in robotics and AI. One approach examined the refine-
ment of agent action theories represented using situation
calculus at two different levels. This approach makes a
strong assumption of the existence of a bisimulation rela-
tion between the action theories for a given refinement
mapping between these theories at the high-level and the
low-level (Banihashemi, Giacomo, and Lesperance 2018).
The principle of refinement has also been used to construct
abstractions of ASP programs, with the objective of shrink-
ing the domain size while preserving the structure of the
rules (Saribatur, Eiter, and Schuller 2021). An example of
tightly coupled systems in robotics is the refinement-based
architecture (REBA) that considers transition diagrams of
any given domain at two different resolutions, with the
fine-resolution diagrams defined formally as a refinement
of the coarse-resolution diagram (Sridharan et al. 2019).
Non-monotonic logical reasoning with limited common-
sense domain knowledge at the coarse-resolution provides
a sequence of abstract actions to achieve any given goal.
Each abstract action is implemented as a sequence of con-
crete actions by automatically zooming to and reasoning
probabilistically with automatically constructed models
(e.g., POMDPs) of the relevant part of the fine-resolution
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diagram, adding relevant observations and outcomes to
the coarse-resolution history. The formal definition of
refinement, zooming, and the connections between the
transition diagrams enables smooth transfer of relevant
information and control, and improves scalability. It also
enables the robot to represent and reason with sophis-
ticated cognitive theories in the coarse resolution, for
example, with an adaptive theory of intentions (Gomez,
Sridharan, and Riley 2021).

Cognitive architectures

Systems such as ACT-R (Anderson and Lebiere 2014),
SOAR (Laird 2012), ICARUS (Langley and Choi 2006),
and DIRAC (Scheutz et al. 2007) can represent and draw
inferences based on declarative knowledge, often using
first-order logic. These architectures typically support
SDM through a linked representation, but some archi-
tectures have pursued a unified representation for use in
robotics by attaching a quantitative measure of uncertainty
to logic statements (Sarathy and Scheutz 2018).

There are many other RDK-for-SDM systems based on
hybrid representations. In these systems, the focus is not
on developing new representations; they instead adapt or
combine existing representations to support interesting
reasoning and learning capabilities, as described below.

Reasoning-focused systems

Next, we discuss some other representative RDK-for-SDM
systems in which the primary focus is on addressing
related reasoning challenges.

RDK for state estimation

RDK methods can be used for estimating the current world
state in order to guide SDM. Although practical domains
often include many objects with different attributes, and
multiple relationships between these objects, only a small
subset of these objects, attributes, and relationships may
be relevant to any particular task that an agent has to
perform. Researchers have, therefore, used RDK meth-
ods to identify the task-relevant information to guide
state estimation and SDM. For instance, the state of
the world has been represented using knowledge predi-
cates and assumptive predicates, which were then used
for planning based on declarative action knowledge and
probabilistic rules (Hanheide et al. 2017). This approach,
embedded within a three-layered architecture, was used
for applications such as object search, and semantic map-
ping. Another example is the CORPP system that uses
P-log (Balai, Gelfond, and Zhang 2019) to reason with
probabilistic declarative knowledge in order to generate
informative priors for POMDP planning (Zhang and Stone

2015). In a human-robot dialog domain, CORPP demon-
strated that commonsense knowledge, such as “people
like coffee in the mornings” and “office doors are closed
over weekends”, is useful for guiding dialog actions. Other
researchers have exploited factored state spaces to develop
algorithms that use probabilistic declarative knowledge to
efficiently compute informative priors for POMDPs (Chit-
nis, Kaelbling, and Lozano-Pérez 2018). In particular,
they developed an efficient belief state representation that
dynamically selects an appropriate factoring to guide SDM,
and demonstrated its effectiveness in robot cooking tasks.
These methods separate the variables modeled at different
levels and (manually) link relevant variables between the
levels, improving scalability and dynamic response. These
links enable the flow of information between the differ-
ent reasoning mechanisms, often at different abstractions,
but they typically do not focus on developing (or extend-
ing) the underlying representations or on establishing the
properties of the connections between the representations.

Dynamics models for SDM

In some RDK-for-SDM systems, the focus is on RDK guid-
ing the construction or adaptation of the world models
used for SDM. One example is the extension of (Chitnis,
Kaelbling, and Lozano-Pérez 2018) that seeks to automati-
cally determine the variables to be modeled in the different
representations (Chitnis and Lozano-Pérez 2020). Another
example is the use of logical smoothing to refine past
beliefs in light of new observations; the refined beliefs can
then be used for diagnostics and to reduce the state space
for planning (Mombourquette, Muise, and Mcllraith 2017).
There is also work on an action language called pBC+,
which supports the definition of MDPs and POMDPs
over finite and infinite horizons (Wang, Zhang, and
Lee 2019).

In some RDK-for-SDM systems, RDK and prior expe-
riences of executing actions in the domain are used to
construct domain models and guide SDM. For instance,
symbolic planning has been combined with hierarchical
RL to guide the agent’s interactions with the world, result-
ing in reliable world models and SDM (Illanes et al. 2020).
In other work, each symbolic transition is mapped (manu-
ally) to options, that is, temporally extended MDP actions;
RDK helps compute the MDP models and policies, and the
outcomes of executing the corresponding primitive actions
help revise the values of state action combinations in the
symbolic reasoner (Yang et al. 2018). These systems use a
linked representation, and reason about dynamics in RDK
and states and world models in SDM. Other systems rea-
son without explicit world models in SDM, for example,
the use of deep RL methods to compute the policies in the
options corresponding to each symbolic transition in the
context of game domains (Lyu et al. 2019).
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Credit assignment and reward shaping

When MDPs or POMDPs are used for SDM in complex
domains, rewards are sparse and typically obtained only
on task completion, for example, after executing a plan
or at the end of a board game. As a special case of learn-
ing and using world models in SDM, researchers have
leveraged RDK methods to model and shape the rewards
to improve the agent’s decision-making. For instance,
declarative action knowledge has been used to compute
action sequences, using the action sequences to compute
a potential function and for reward shaping in game
domains (Efthymiadis and Kudenko 2013; Grounds and
Kudenko 2005; Grzes and Kudenko 2008). In this work,
RL methods such as Q-learning, SARSA, and Dyna-Q
were combined with a STRIPS planner, with the planner
shaping the reward function used by the agents to com-
pute the optimal policy. These systems perform RDK with
domain dynamics, and reason about states but no explicit
world models in SDM.

In some cases, the reward specification is obtained
from statistics and/or contextual knowledge provided by
humans. For example, the iCORPP algorithm enables a
robot to reason with contextual knowledge using P-log
to automatically determine the rewards (and transition
functions) of a POMDP used for planning (Zhang, Khan-
delwal, and Stone 2017). Another system, called LPPGI,
enables robots to leverage human expertise for POMDP-
based planning under uncertainty in the context of task
specification and execution (Hoelscher et al. 2018). RDK
in this system is rather limited; domain dynamics are not
considered and the system is limited to maximizing the
expected probability of satisfying logic objectives in the
context of a robot arm stacking boxes. There has also
been work on “reward machines” that uses linear temporal
logic to represent and reason with declarative knowl-
edge, especially temporal constraints implied by phrases
such as “until” and “eventually,” in order to automatically
generate additional rewards for RL that are potentially
non-Markovian (Icarte et al. 2022).

Guiding SDM-based exploration

When the main objective of SDM is exploration or discov-
ery of particular aspects of the domain, RDK can be used
to inform and guide the trade-off between exploration and
exploitation, and to avoid poor-quality exploration behav-
iors in SDM. For instance, the DARLING algorithm uses
RL to explore and compute action sequences that lead to
long-term goals under uncertainty, with RDK being used to
filter out unreasonable actions from exploration (Leonetti,
Iocchi, and Stone 2016); this approach has been evalu-
ated on real robots navigating office environments to locate
people of interest.

An algorithm called GDQ uses action knowledge to gen-
erate artificial, “oppotimistic” experience to give RL agents
a warm-up learning experience before letting them inter-
act with the real world (Hayamizu et al. 2021). Another
similar approach uses RDK to guide an agent’s exploration
behavior (formulated as SDM) in nonstationary environ-
ments (Ferreira et al. 2017), and to learn constraints that
prevent risky behaviors in video games (Zhang et al. 2019).
There is also work on non-monotonic logical reasoning
with commonsense knowledge to automatically determine
the state space for relational RL-based exploration of pre-
viously unknown action capabilities (Sridharan, Meadows,
and Gomez 2017).

Knowledge acquisition-focused systems

Next, we discuss some RDK-for-SDM systems whose main
contribution is the acquisition (and revision) of domain
knowledge used for RDK. This knowledge can be obtained
through manual encoding and/or automated acquisition
from different sources (Web, corpora, sensor inputs).

Knowledge acquisition while acting

Some RDK-for-SDM systems allow the agent to acquire
knowledge while also simultaneously reasoning and exe-
cuting actions in dynamic domains. Such systems can
often support online and offline knowledge acquisition,
with active and reactive aspects. For example, ASP-
based non-monotonic logical reasoning has been used to
guide relational RL (i.e., SDM) and decision-tree induc-
tion in order to learn previously unknown actions and
domain axioms; this knowledge is subsequently used for
RDK (Sridharan and Meadows 2018). This system sup-
ports reactive knowledge acquisition, with reasoning used
to trigger and guide learning only when some unexpected
outcomes are observed (e.g., to acquire knowledge of pre-
viously unknown constraints), as well as active, online
knowledge acquisition, with the robot acquiring previ-
ously unknown knowledge based on explicit exploration
(e.g., of the potential effects of new actions).

Knowledge acquisition from experience

There is a well-established literature of RDK-for-SDM
systems, including many described above, acquiring or
revising knowledge of domain dynamics in a super-
vised or semi-supervised training phase. The robot could,
for instance, be asked to execute different actions and
observe the corresponding outcomes in scenarios with
known ground truth information (Sridharan et al. 2019;
Zhang, Khandelwal, and Stone 2017). More recently, some
RDK-for-SDM systems have built on recent developments
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in data-driven methods (e.g., deep learning and RL) to
acquire knowledge. For instance, the symbols needed for
task planning have been extracted from the replay buffers
of multiple trials of deep RL, with similar states (in the
replay buffers) being grouped to form the search space for
symbolic planning (Eysenbach, Salakhutdinov, and Levine
2019). In robotics domains, a small number of real-world
trials have been used to enable a robot to learn the symbolic
representations of the preconditions and effects of a door-
opening action (Konidaris, Kaelbling, and Lozano-Perez
2018). Knowledge acquisition in these systems is often
offline (i.e., batch of data collected from the robot is pro-
cessed offline to extract knowledge); this acquisition can
be achieved by targeted exploration (i.e., active) or reactive.
Researchers have also enabled robots to simultaneously
acquire latent space symbols and language groundings
based on prior demonstration trajectories paired with nat-
ural language instructions (Gopalan et al. 2020); in this
case, knowledge acquisition is active and offline, and
requires significantly fewer training samples compared
to end-to-end systems. In another RDK-for-SDM system,
non-monotonic logical reasoning is used to guide deep
network learning and active acquisition of previously
unknown axioms describing the behavior of these net-
works (Mota, Sridharan, and Leonardis 2021; Riley and
Sridharan 2019).

Knowledge acquisition from humans, web, and other
sources
For some RDK-for-SDM systems, researchers have devel-
oped a dialog-based interactive approach for situated task
specification, with the robot learning new actions and their
preconditions through verbal instructions (Mericli et al.
2014). In arelated approach, SDM has been used to manage
human-robot dialog, which helps a robot acquire knowl-
edge of synonyms (e.g., “java” and “coffee”) that are used
for RDK (Thomason et al. 2015). Building on this work,
other researchers have developed methods to add new
object entities to the declarative knowledge in RDK-for-
SDM systems (Amiri et al. 2019). In other work, human
(verbal) descriptions of observed robot behavior have been
used to extract knowledge of previously unknown actions
and action effects, which is merged with existing knowl-
edge in the RDK component (Sridharan and Meadows
2018). More recent work in the context of a system enabling
an agent to respond to a human’s questions about its deci-
sions and evolution of beliefs, has also enabled the agent
to interactively construct questions to resolve ambiguities
in the human’s questions (Mota and Sridharan 2021).
Some researchers have equipped their RDK-for-SDM
systems with the ability to acquire domain knowledge
using data available on the Web (Samadi, Kollar, and
Veloso 2012). Information (to be encoded in first-order
logic) about the likely location of paper would, for instance,

be found by analyzing the results of a web search for
“kitchen” and “office.”

CHALLENGES AND OPPORTUNITIES

Over the last few decades, researchers have made sig-
nificant progress in developing sophisticated methods
for RDK and for SDM under uncertainty. In recent
years, improved understanding of the complementary
strengths of the methods developed in these two areas
has also led to the development of sophisticated meth-
ods that seek to integrate and exploit these strengths.
These integrated systems have provided promising results,
but they have also identified several open problems
and opened up many directions for further research.
Below, we discuss some of these problems and research
directions:

Representational choices

As discussed in “Representation-focused systems,” exist-
ing methods integrating RDK and SDM methods are
predominantly based on unified or linked representations.
General-purpose methods often use a unified represen-
tation and associated reasoning methods for different
descriptions of domain knowledge, for example, a unified
representation for logic-based and probabilistic descrip-
tions of knowledge. On the other hand, integrated systems
developed specifically for robotics and other dynamic
domains link rather than unify the different represen-
tations, including those at different abstractions, trading
correctness for computational efficiency. A wide range
of representations and reasoning methods are possible
within each of these two classes; these need to be explored
further to better understand the choice (of representa-
tion and reasoning methods) best suited to any partic-
ular application domain. During this exploration, it will
be important to carefully study any trade-offs made in
terms of the expressiveness of the representation, the abil-
ity to support different abstractions, the computational
complexity of the reasoning methods, and the ability to
establish that the behavior of the robot (or agent) equipped
with the resulting system satisfies certain desirable prop-
erties. These hybrid representations can also form the
foundation of modern neuro-symbolic AI (Garcez et al.
2019; Hitzler and Sarker 2022) methods for reasoning
and learning.

Interactive learning

Irrespective of the representation and reasoning methods
used for RDK, SDM, or a combination of the two, the
knowledge encoded will be incomplete and/or cease to be
relevant over a period of time in any practical, dynamic
domain. In the age of “big data,” certain domains provide
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ready availability of a lot of labeled data from which the
previously unknown information can be learned, whereas
such labeled training data are scarce in other domains; in
either case, the knowledge acquired from the data may not
be comprehensive. Also, it is computationally expensive to
learn information from large amounts of data. Incremen-
tal and interactive learning thus continues to be an open
problem in systems that integrate RDK and SDM. Promis-
ing results have been obtained by methods that promote
efficient learning by using reasoning to trigger learning
only when it is needed and limit (or guide) learning to
those concepts that are relevant to the tasks at hand (see
discussion in “Reasoning-focused systems” and “Knowl-
edge acquisition-focused systems”); such methods need to
be developed and analyzed further. Another interesting
research thrust is to learn cumulatively from the available
data and merge the learned information with the existing
knowledge such that reasoning continues to be efficient
as additional knowledge is acquired over time (Laird et al.
2017; Langley 2017).

Human “in the loop.”

Many methods for RDK, SDM, or RDK-for-SDM assume
that any prior knowledge about the domain and the asso-
ciated tasks is provided by the human in the initial stages,
or that humans are available during task execution for
reliable feedback and supervision. These assumptions do
not always hold true in practice. Humans can be a rich
source of information but there is often a nontrivial cost
associated with acquiring and encoding such knowledge
from people. Since it is challenging for humans to accu-
rately specify or encode domain knowledge in complex
domains, there is a need for methods that consider humans
as collaborators to be consulted by a robot based on neces-
sity and availability. Such methods will need to address
key challenges related to the protocols for communication
between a robot and a human, considering factors such
as the expertise of the human participants and the avail-
ability of humans in social contexts (Rosenthal, Veloso,
and Dey 2012). Another related problem that is increas-
ingly getting a lot of attention is to enable a reasoning
and learning system to explain its decisions and beliefs in
human-understandable terms.

Combining reasoning, learning, and control

As discussed in this paper, many methods that integrate
RDK and SDM focus on decision making (or reason-
ing) tasks. There are also some methods that include a
learning component and some that focus on robot con-
trol and manipulation tasks. However, robots that sense
and interact with the real world often require a system
that combines reasoning, learning, and control capabil-
ities (Garrett et al. 2021). Similar to the combination of

reasoning and learning (as mentioned above), tightly cou-
pling reasoning, learning, and control presents unique
advantages and unique open problems in the context of
integrated RDK and SDM. For instance, reasoning with
predictive models and learning can be used to identify (on
demand) and revise the relevant variables in the control
laws for the tasks at hand (Mathew et al. 2019; Sidhik,
Sridharan, and Ruiken 2021). At the same time, real-world
control tasks often require a very different representation
of domain attributes, for example, reasoning to move a
manipulator arm may be performed in a discrete, coarser-
granularity space of states and actions whereas the actual
manipulation tasks being reasoned about need to be per-
formed in a continuous, finer-granularity space. There is
thus a need for systems that integrate RDK and SDM,
and suitably combine reasoning, learning, and control
by carefully exploring the effect of different representa-
tional choices and the methods being used for reasoning
and learning.

Scalability and teamwork

Despite considerable research, algorithms for RDK, SDM,
or a combination of the two, find it difficult to scale to more
complex domains. This is usually due to the space of possi-
ble options to be considered, for example, the size of the
data to be reasoned with by the RDK methods, and the
size of the state-action space to be considered by the SDM
methods. All of these challenges are complicated further
when applications require a team of robots and humans
to collaborate with each other. For instance, representa-
tional choices and reasoning algorithms may now need to
carefully consider the capabilities of the teammates before
making a decision. As described earlier, there are some
promising avenues to be explored further. These include
the computational modeling and use of principles such
as relevance, persistence, and non-procrastination, which
are well-known in cognitive systems (Langley 2017), in the
design of the desired integrated system (Blount, Gelfond,
and Balduccini 2015; Gomez, Sridharan, and Riley 2021).
Such a system could then automatically determine the best
use of available resources and algorithms depending on the
domain attributes and tasks at hand.

Explainability and trust

With the increasing use of AI and machine learning
methods in different applications, there is renewed focus
within the research community on enabling humans to
understand the operation of these methods (Anjomshoae
et al. 2019; Miller 2019). Issues such as explainability or
trust remain open problems for RDK-for-SDM systems,
especially those that integrate reasoning and learning
in complex domains. At the same time, the design of
these systems provides promising research threads to be
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explored further. For instance, the use of logics for repre-
senting and reasoning with commonsense knowledge in
the RDK component of such systems provides a foundation
for making the associated reasoning and learning more
transparent. Research also indicates that the underlying
representation and established knowledge representation
tools can be exploited to reliably and efficiently trace
beliefs and provide on-demand explanations at the desired
level of abstraction, before, during, or after task execu-
tion (Sridharan and Meadows 2019; Mota, Sridharan, and
Leonardis 2021). A key challenge would be rigorously study
trust and explainability from the viewpoint of a nonexpert
human interacting with these systems.

Evaluation measures and benchmarks

The complexity of the components of RDK-for-SDM sys-
tems, and the connections between of these components,
make it rather challenging to isolate and evaluate the
impact of the underlying representation, reasoning meth-
ods, and learning methods. Often, the observed perfor-
mance of a particular algorithm (e.g., for planning) is
influenced by the design of this algorithm and the con-
nections between this algorithm and other methods in the
system. A key direction for further research is the defini-
tion of common measures and tasks for the evaluation of
such architectures; doing so would provide deeper insights
into the development and use of such architectures. The
evaluation measures will need to go beyond measuring
the accuracy and computational efficiency of individual
components (e.g., planning and task completion accuracy,
learning rate, execution time) to examine the effects of
the links between the components. These measures could,
for instance, explore scalability to more complex domains
and tasks. Here, complexity could refer to the type and
amount of knowledge encoded in the system; the type,
duration, and number of operations to be performed by
the robot; and the number and duration of interactions
between the different components (of the system) required
to complete the task. In addition, evaluation could con-
sider qualitative measures of performance, for example,
the ability to complete different tasks, the ability to pro-
vide interactive explanations, or the satisfaction of humans
interacting with the system.

The benchmarks used for evaluation should not be
limited to providing datasets or scenarios for evaluating
individual algorithms. Similar to the evaluation measures,
the benchmarks should instead challenge the robot to
explore and use the interplay between the different com-
ponents of the system being evaluated, for example, use
reasoning to guide knowledge acquisition, and use the
learned knowledge to inform reasoning. In this context,
many different domains hold promise in terms of being
suitable for evaluation of such RDK-for-SDM systems;

these include games (Yang et al. 2018; Zhang et al. 2019),
interactive dialog (Amiri et al. 2019; Zhang and Stone
2015), robot navigation and exploration (Hanheide et al.
2017; Leonetti, Iocchi, and Stone 2016), and scene under-
standing (Chitnis, Kaelbling, and Lozano-Pérez 2018; Jiang
et al. 2019; Mota and Sridharan 2019; Mota, Sridharan, and
Leonardis 2021).
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