
■ Robot soccer competition provides an excellent
opportunity for integrated robotics research. In
particular, robot players in a soccer game must rec-
ognize and track objects in real time, navigate in a
dynamic field, collaborate with teammates, and
strike the ball in the correct direction. All these
tasks demand robots that are autonomous (sens-
ing, thinking, and acting as independent crea-
tures), efficient (functioning under time and
resource constraints), cooperative (collaborating
with each other to accomplish tasks that are
beyond an individual’s capabilities), and intelli-
gent (reasoning and planning actions and perhaps
learning from experience). Furthermore, all these
capabilities must be integrated into a single and
complete system, which raises a set of challenges
that are new to individual research disciplines.
This article describes our experience (problems and
solutions) in these aspects. Our robots share the
same general architecture and basic hardware, but
they have integrated abilities to play different roles
(goalkeeper, defender, or forward) and use differ-
ent strategies in their behavior. Our philosophy in
building these robots is to use the least sophistica-
tion to make them as robust and integrated as pos-
sible. At RoboCup-97, held as part of the Fifteenth
International Joint Conference on Artificial Intel-
ligence, these integrated robots performed well,
and our DREAMTEAM won the world championship
in the middle-size robot league.

The RoboCup task is for a team of fast-
moving robots to cooperatively play soc-
cer in a dynamic environment (Kitano et

al. 1995; Mackworth and Sahota 1994).
Because individual skills and teamwork are
fundamental factors in the performance of a
soccer team, RoboCup is an excellent test bed
for integrated robots. Each soccer robot must
have the basic soccer skills—dribbling, shoot-
ing, passing, and recovering the ball from an
opponent—and must use these skills to make
complex plays according to the team strategy

and the current situation on the field. For
example, depending on the role it is playing,
an agent must evaluate its position with
respect to its teammates and opponents and
then decide whether to wait for a pass, run for
the ball, cover an opponent’s attack, or go to
help a teammate.

To build agents with soccer-playing capabil-
ities, we must design an architecture to inte-
grate hardware and software and balance
between the system’s performance, flexibility,
and resource consumption. Within this archi-
tecture, we must have (1) a fast and reliable
vision component to detect various static and
dynamic objects and adapt to different lighting
conditions and color schema, (2) an effective
and accurate motor system to deal with uncer-
tainties in motor control, and (3) a set of soft-
ware strategies for robots to play different roles
to increase the flexibility of the team. Because
solutions to these tasks require integration of
several distinct research fields, such as robotics,
AI, and vision, we have to address some of the
integration problems that have not been
attacked before. For example, because our ro-
bots perceive and process all visual images on
board, the noise ratio in the perception is high-
er than those that use static global vision sys-
tems. Such integration issues demand some
extra cautions in the way the pictures are tak-
en. Furthermore, because the environment is
highly dynamic, uncertainties associated with
the motor system will vary with different
actions and the changes of power supply. This
uncertainty posts additional challenges on
real-time reasoning about action in compari-
son with systems that are not integrated as
complete and independent physical entities.

In the following sections of this article, we
address these tasks and problems in detail. The
discussion will be organized as descriptions of
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of each robot is a 30 x 50 centimeter, 4-wheel,
2 x 4 drive, direct-current model car. The
wheels on each side can be controlled inde-
pendently to make the car spin fast and
maneuver easily. The two motors are con-
trolled by the on-board computer through two
serial ports. We designed and built the hard-
ware interface between the serial ports and the
motor control circuits on the vehicle. The
robot can be controlled to move forward and
backward and turn left and right. The “eye” of
the robot is a commercial digital color camera
called QuickCam made by Connectix Corp.
The images from this camera are sent into the
on-board computer through a parallel port.
The on-board computer is an all-in-one 133-
megahertz 586 central processing unit (CPU)
board extensible to connect various input-out-
put devices. There are two batteries on board,
one for the motor and the other for the com-
puter and camera.

The software architecture of our robot is
illustrated in figure 2. The three main software
components of a robot agent are (1) the vision
module, (2) the decision engine, and (3) the
drive controller. The task of the vision module is
to drive the camera to take pictures and extract
information from the current picture. Such
information contains an object’s type, direc-
tion, and distance. This information is then
processed by the decision engine, which is com-
posed of two processing units: (1) the internal
model manager and (2) the strategy planner.
The model manager takes the vision module’s
output and maintains an internal representa-
tion of the key objects in the soccer field. The
strategy planner combines the internal model
with its own strategy knowledge and decides
the robot’s next action. Once the action has
been decided, a command is sent to the drive
controller that is in charge of properly execut-
ing the selected actions. Notice that in this
architecture, the functions are designed in a
modular way so that we can easily add new
software or hardware to extend the system’s
working capabilities.

We use LINUX as the on-board operating sys-
tem and built a special kernel with a 4-
megabyte (MB) file system, all compressed on
a single 1.4-MB floppy disk for easy download-
ing. The entire software system (vision, deci-
sion, and motor drive) consists of about 6500
lines of C and C++ code.

One challenge we faced during the design of
the architecture was to draw a proper line
between hardware and software. For example,
to control the two motors, we had a choice
between using one serial port (a commercial
laptop) or two serial ports (a complete all-in-

components in our systems, with highlights
on key issues and challenges. The related work
is discussed at the end.

The System Architecture 
Our design philosophy for the system architec-
ture is that each robot is a complete and active
physical system that can intelligently maneu-
ver and perform challenging tasks in a realistic
environment. To survive the rapidly changing
environment in a soccer game, each robot
must be physically strong, computationally
fast, and behaviorally accurate. Considerable
importance is given to an individual robot’s
ability to perform on its own without any off-
board resources such as global, birds-eye-view
cameras or remote computing processors. Each
robot’s behavior must be based on its own sen-
sor data, decision-making software, and even-
tually communication with teammates.

The hardware configuration of our robot is
as follows (see examples in figure 1): The basis
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Figure 1. Integrated Soccer Robot.



one CPU board); we chose the latter because
we decided to solve the interface issue com-
pletely in hardware. (The former requires a
complex software protocol and hardware
interface). In retrospect, it seems that our deci-
sion on this issue, and other issues in architec-
ture, was mainly driven by two factors: (1) fea-
sibility and (2) robustness.

The Vision Module
Just as eyesight is essential to a human player,
a soccer robot depends almost entirely on its
visual input to perform its tasks, such as deter-
mining the direction and distance of objects in
the visual field. These objects include the ball,
the goals, other players, and the lines in the
field (sidelines, end of field, and penalty area).
All this information is extracted from an image
of 658 x 496 RGB (red, green, blue) pixels
received from the on-board camera by a set of
basic routines from a free package called
CQCAM, provided by Patrick Reynolds from the
University of Virginia.

Because the on-board computing resources
for an integrated robot are limited, it is a chal-
lenge to design and implement a vision system
that is fast and reliable. To make the recogni-
tion procedure fast, we developed a sample-
based, active method that can quickly focus
attention on certain objects. Based on the
object that needs to be identified, this method
will automatically select a certain number of
rows or columns in an area of the frame where
the object is most likely to be located. For
example, to search for a ball in a frame, this
method will selectively search only a few hor-
izontal rows in the lower part of the frame. If
some of these rows contain segments that are
red, then the program will report the existence
of the ball (recall that the ball is painted red).
Notice that domain knowledge about soccer is
useful here to determine where and how the
sample pixels should be searched. For example,
because the ball is often on the floor, only the
lower part of the image needs to be searched
when we are looking for the ball. Similarly,
when the robot is looking for a goal, it will
selectively search columns across the image,
and the search should be from the floor up.
With this method, the speed to reliably detect
and identify objects, including take the pic-
tures, is greatly improved; we have reached
frame rates as high as six images a second.

To further increase the speed of perception,
this vision routine is used to facilitate the focus
of attention on important objects. Thus, in-
stead of searching for all objects all the time,
the system will first look for the ball. Depend-

ing on the results, the vision will selectively
look for other objects. For example, if the ball
is not found, then no other objects need to be
searched. If the ball is found, then the next
important object should be goals. This way,
vision is highly active and selective.

To increase the reliability of object recogni-
tion, this method is combined with two addi-
tional processes: One is the conversion of RGB
to HSV (hue, saturation, value), and the other
is neighborhood checking to determine the
color of pixels. The reason we convert RGB to
HSV is that HSV is much more stable than RGB
when light conditions are slightly changed.
Neighborhood checking is an effective way to
deal with noisy pixels when determining col-
ors. The basic idea is that pixels are not exam-
ined individually for their colors but, rather,
are grouped together into segment windows
and use a majority-vote scheme to determine
the color of a window. For example, if the win-
dow size for red is 5 and the voting threshold
is 3/5, then a line segment of rrgrr (where r is
red, and g is not red) will still be judged as red.

An object’s direction and distance are calcu-
lated based on their relative position and size
in the image. This approach is feasible because
the size of the ball, the goal, the wall, and oth-
ers are known to the robot at the outset. For
example, if one image contains a blue rectan-
gle of size 40 x 10 pixels (for width and height)
centered at x = 100 and y = 90 in the image,
then we can conclude that the blue goal is cur-
rently at 10 degrees left and 70 inches away.

To make this vision approach more easily
adjustable when the environment is changed,
we have kept the parameters for all objects in
a table in a separate file. This table contains the
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controller was how to make the measured
movements, such as moving forward 10 inches
or turning left 35 degrees. We solved this prob-
lem first by building a software mapping from
the measurements of movement to the time
duration of the motor running. For example, a
command turning left for 30 degrees would be
translated by this mapping to forwarding the
right motor and backwarding the left motor
for 300 milliseconds. This solution works well
when all components in the system, especially
the batteries, are in perfect condition, and
floor material is good for wheel movement.
However, the accuracy of this open-loop con-
trol deteriorates when the power decreases or
as the environment changes. Once this deteri-
oration happens, the whole robot behaves
strangely because the motor movements are
no longer agreeing with the control signals.

To solve this problem, we have made all sys-
tem motor controls closed loop. Instead of say-
ing “turning 75 degrees,” we also specify the ter-
mination criteria for such a turn command. For
example, if the purpose of this turning is to find
a goal, then the program repeats smaller turn-
ings until the goal is found. With the closed-
loop control commands, the reliability of motor
control has increased considerably and become
more robust with respect to power fluctuation.

This closed-loop motor control also results
in one of our secret weapons for well-behaved
dribbling actions. Different from other team’s
dribbling actions that can quickly lose the ball,
our robot uses closed-loop control and contin-
uously adjusts its moving direction according
to the current direction of the ball. This
approach worked very well in the competition
and contributed a great deal to the success of
our team.

The Decision Engine
Based on the existing theories of autonomous
agents (for example, Shen [1994]), integrated
robots are best to be model driven. This princi-
ple has guided our design and implementation
of the brain of our robots, namely, the decision
engine. Compared to other model-less and
pure-reactive approaches, our approach could,
in principle, demonstrate more intelligent
behaviors without sacrificing the ability to
quickly react to different situations.

As one can see in figure 2, the decision engine
receives input from the vision module and sends
move commands to the drive controller. The
decision engine bases its decisions on a combi-
nation of the received sensor input, the agent’s
internal model of its environment, and knowl-
edge about the agent’s strategies and goals. The

values of camera parameters such as brightness
and contrast as well as window size, voting
threshold, average HSV values, and search
fashion (direction, steps, and area). When the
environment or the vision task is changed,
only this file needs to be changed, and the
vision program will function properly.

Given the current processing-rate speed of
object recognition, it is now possible to track
the moving direction of the ball and other
players. To do so, a robot will take two consec-
utive pictures and compare the locations of the
ball in these two pictures. If the direction of
the ball moves to the left (right), then the
robot concludes that the real ball is moving
toward the left (right). In fact, this method is
used by our goalkeeper to predict the move-
ment of an incoming ball.

Vision modules such as the one described
here also face problems that are unique for
integrated robots. For example, images will
have a much higher noise ratio if the robot is
not careful about when and how the pictures
are taken. It took us quite a long time to realize
this problem. At first, we were puzzled by the
fact that although the vision system has tested
well statically, our robot would sometimes
behave strangely, as if it were blind. After
many trials and errors, we noticed that pic-
tures that are taken while the robot is moving
fast have low quality. Such pictures are not
useful at all in decision making. Since this
time, special care has been given to the entire
software system, and pictures are taken only
when the robot is not moving.

Drive Controller
As specified in the system architecture, the dri-
ve controller takes commands from the deci-
sion engine and sends the control signals to
the two motors in parallel by way of two serial
ports and a special-purpose hardware interface
board. The interface provides a bridge between
the two systems (the computer and the robot
body) that have different power supplies.

Because the two motors (one for each side of
the robot) can be controlled separately, the
robot can respond to a large set of flexible
commands. The basic ones include turning left
and right and moving forward and backward.
Others include making a big circle in the for-
ward-left, forward-right, back-left, and back-
right directions. This circular movement is
done by giving different amounts of drive
force to the different sides. In the competition,
however, we only used the basic actions for
reliability reasons.

One challenge for building this simple drive
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agent’s internal model and strategies are influ-
enced by the role the agent plays on the soccer
field. There are three types of agent role or play-
ing position: (1) goalkeeper, (2) defender, and (3)
forward. The team strategy is distributed into
the role strategies of each individual agent.
Depending on the role type, an agent can be
more concerned about a particular area or object
on the soccer field. For example, a goalkeeper is
more concerned about its own goal, but a for-
ward is more interested in the opponent’s goal.
These differences are encoded into the two
modules that deal with the internal model and
the agent’s strategies.

The decision engine consists of two sub-
modules: (1) the internal model manager and
(2) the strategy planner. These submodules
communicate with each other to select the
best decision for the agent’s next action. The
model manager converts the vision module’s
output into a map of the agent’s current envi-
ronment as well as generates a set of object-
movement predictions. It calculates the salient
features in the field and then communicates
them to the strategy planner. To calculate the
best action, the strategy planner uses both the
information from the model manager and the
strategy knowledge that it has about the
agent’s role on the field. It then sends this
information to the drive controller and back to
the model manager so that the internal model
can properly be updated.

Model Manager
For robots to know about their environment
and themselves, the model manager uses the
information detected by the vision module to
construct or update an internal model. This
model contains a map of the soccer field and
location vectors for nearby objects. 

A location vector consists of four basic ele-
ments: (1) distance to the object, (2) direction
to the object, (3) change in distance of the
object, and (4) change in direction of the
object. The changes in distance and direction
are used to predict a dynamic object’s move-
ment; these are irrelevant for objects that are
static. Depending on the role a robot is play-
ing, the model manager actively calls the
vision module to get the information that is
important to the robot and updates the inter-
nal model. For example, if the robot is playing
goalkeeper, then it needs to know constantly
about the ball, the goal, and its current loca-
tion relative to the goal.

An internal model is necessary for several rea-
sons: First, because a robot can see only the
objects within its current visual frame, a model
is needed to keep information that is perceived

previously. For example, a forward robot might
not be able to see the goal all the time. Howev-
er, when it sees the ball, it must decide quickly
which direction in which to kick. The informa-
tion in the model can facilitate such decision
readily. Second, the internal model adds robust-
ness for a robot. If the camera fails for a few
cycles (for example, because of being hit or
blocked), the robot can still operate using its
internal model of the environment. Third, the
model is necessary for predicting the environ-
ment. For example, a robot needs to predict the
movement of the ball to intercept it. This pre-
diction can be computed by comparing the
ball’s current direction with its previous one.
Fourth, the internal model can be used to pro-
vide feedback to the strategy planner to
enhance and correct its actions. For example, to
perform a turn to find the ball using the closed-
loop control discussed earlier, the internal mod-
el provides the determination criteria to be
checked with the current visual information.

Strategy Planner
To play a successful soccer game, each robot
must react appropriately to different situations
in the field, which is accomplished by the
strategy planner that resides in the decision
engine on each robot. Internally, a situation is
represented as a vector of visual clues, such as
the relative direction and distance to the ball,
goals, and other players. A strategy is then a set
of mappings from situations to actions. For
example, if a forward player is facing the oppo-
nent’s goal and sees the ball, then there is a
mapping to tell it to perform the kick action. 

For our robots, there are five basic actions:
(1) forward, (2) backward, (3) stop, (4) turn
left, and (5) turn right. These actions can be
composed to form macroactions such as kick,
line up, intercept, home, and detour. For
example, a detour action is basically a sequence
of actions to turn away from the ball, move
forward to pass the ball, turn back to find the
ball again, and then move forward to push the
ball. These compound actions represent a form
of simple planning, which contributes many
of the intelligent behaviors demonstrated by
our robots. Indeed, during the competition,
the audience cheered when they saw one of
our robots make a detour to protect our goal.

Role Specifications
There are five roles that a robot can play for its
team: (1) left forward, (2) right forward, (3) left
defender, (4) right defender, and (5) goalkeep-
er. Each role is actually implemented as a set of
mappings from situations to actions, as des-
cribed previously. Each role has its own territo-
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robot saw the ball right in front of the goal and
pushed it in. In the future, we will improve our
role specification to include passing and assist-
ing ball dribbling, preferably without any
explicit communications.

Learning is an important issue yet to be
addressed, although our model-based
approach provides the basic elements for its
implementation. One particular area where
learning is especially needed is the calibration
of the vision system in a new environment. In
the long run, it would also be nice to have the
robot learn from its own successes and mis-
takes (such as scoring at one’s own goal).

Related Work
The approach we used in RoboCup-97 is
descended from an earlier, integrated system
called LIVE (Shen 1991) for autonomous learn-
ing from the environment (Shen 1994). It also
shares ideas with integrated cognitive architec-
tures (Laird 1991), layered-controlled robots
(Brooks 1986), behavior-based robots (Arkin
1987; Arbib 1981), and recent progress in
agent research (Garcia-Alegre and Recio 1997).
The unique feature of our robots, however, is
the use of internal model and closed-loop con-
trol in action planning and execution. Our ear-
lier work along this line includes a silver
medal–winning robot (for indoor navigation
and problem solving) called YODA (Shen et al.
1997) in the 1996 AAAI Robot Competition
and Exhibition.

Conclusions and Future Work
In building integrated robots that are
autonomous, efficient, collaborative, and
intelligent, we demonstrated a simple but
effective approach. Currently, it seems that the
most effective approach for soccer robots is to
build integrated robots using a minimum of
sophistication to achieve the most robustness.
In the future, we will continue our design strat-
egy but improve our robots in the areas of col-
laboration (passing), sensing (faster and more
reliable), and learning from experience.
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Expertise in Context:
Human and Machine

COMPUTERIZED “expert
systems” are among

the best known
applications of artificial intel-
ligence. But what is expertise?
The nature of knowledge and

expertise, and their relation to
context, is the focus of active

discussion — even controversy
— among psychologists,

philosophers, computer scien-
tists, and other cognitive sci-

entists. The questions reach to
the very foundations of cogni-

tive theory — with new per-
spectives contributed by the

social sciences. These debates
about the status and nature of
expert knowledge are of inter-

est to and informed by the
artificial intelligence commu-
nity — with new perspectives

contributed by “construc-
tivists” and “situationalists.”

The twenty-three essays in
this volume discuss the essen-

tial nature of expert knowl-
edge, as well as such questions

such as how “expertise” dif-
fers from mere “knowledge,”
the relation between the indi-

vidual and group processes
involved in knowledge in gen-
eral and expertise in particu-
lar, the social and other con-

texts of expertise, how
expertise can be assessed, and

the relation between human
and computer expertise.
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