Span Model for Open Information Extraction on Accurate Corpus


  • Junlang Zhan Shanghai Jiao Tong University
  • Hai Zhao Shanghai Jiao Tong University



Open Information Extraction (Open IE) is a challenging task especially due to its brittle data basis. Most of Open IE systems have to be trained on automatically built corpus and evaluated on inaccurate test set. In this work, we first alleviate this difficulty from both sides of training and test sets. For the former, we propose an improved model design to more sufficiently exploit training dataset. For the latter, we present our accurately re-annotated benchmark test set (Re-OIE2016) according to a series of linguistic observation and analysis. Then, we introduce a span model instead of previous adopted sequence labeling formulization for n-ary Open IE. Our newly introduced model achieves new state-of-the-art performance on both benchmark evaluation datasets.




How to Cite

Zhan, J., & Zhao, H. (2020). Span Model for Open Information Extraction on Accurate Corpus. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05), 9523-9530.



AAAI Technical Track: Natural Language Processing