Attention-Guide Walk Model in Heterogeneous Information Network for Multi-Style Recommendation Explanation

Authors

  • Xin Wang Jilin University
  • Ying Wang Jilin University
  • Yunzhi Ling Jilin University

DOI:

https://doi.org/10.1609/aaai.v34i04.6095

Abstract

Explainable Recommendation aims at not only providing the recommended items to users, but also making users aware why these items are recommended. Too many interactive factors between users and items can be used to interpret the recommendation in a heterogeneous information network. However, these interactive factors are usually massive, implicit and noisy. The existing recommendation explanation approaches only consider the single explanation style, such as aspect-level or review-level. To address these issues, we propose a framework (MSRE) of generating the multi-style recommendation explanation with the attention-guide walk model on affiliation relations and interaction relations in the heterogeneous information network. Inspired by the attention mechanism, we determine the important contexts for recommendation explanation and learn joint representation of multi-style user-item interactions for enhancing recommendation performance. Constructing extensive experiments on three real-world datasets verifies the effectiveness of our framework on both recommendation performance and recommendation explanation.

Downloads

Published

2020-04-03

How to Cite

Wang, X., Wang, Y., & Ling, Y. (2020). Attention-Guide Walk Model in Heterogeneous Information Network for Multi-Style Recommendation Explanation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 6275-6282. https://doi.org/10.1609/aaai.v34i04.6095

Issue

Section

AAAI Technical Track: Machine Learning