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Abstract

Pedestrian attribute recognition in surveillance is a chal-
lenging task due to poor image quality, significant appear-
ance variations and diverse spatial distribution of different
attributes. This paper treats pedestrian attribute recognition
as a sequential attribute prediction problem and proposes a
novel visual-semantic graph reasoning framework to address
this problem. Our framework contains a spatial graph and
a directed semantic graph. By performing reasoning using
the Graph Convolutional Network (GCN), one graph captures
spatial relations between regions and the other learns poten-
tial semantic relations between attributes. An end-to-end ar-
chitecture is presented to perform mutual embedding between
these two graphs to guide the relational learning for each
other. We verify the proposed framework on three large scale
pedestrian attribute datasets including PETA, RAP, and PA-
100k. Experiments show superiority of the proposed method
over state-of-the-art methods and effectiveness of our joint
GCN structures for sequential attribute prediction.

Introduction

Pedestrian attribute recognition aims to make prediction of a
set of attributes as the semantic descriptions of a pedestrian
image. It has recently drawn a remarkable amount of atten-
tions due to its promising applications in face verification
(Kumar et al. 2009), person retrieval (Siddiquie, Feris, and
Davis 2011), and person re-identification (Layne et al. 2012;
Wang et al. 2018). Although it’s easy to state, however, rec-
ognizing pedestrian attributes in real-world surveillance sce-
narios can be extremely challenging due to three factors: (1)
Some attributes only relate to a small part of regions, which
could be affected by ambiguous details caused by limited
image resolution; (2) The appearance of pedestrian images is
diversified caused by pose variation, viewpoint change, oc-
clusion, background distraction, etc., which make it difficult
to learn reliable image representations; (3) A pedestrian im-
age usually contains multiple correlated attributes and each
attribute may locate at different part regions according to its
semantic characteristics. All these factors make it difficult to
learn an effective attribute recognition model.

To deal with the above mentioned problems, it’s desir-
able to jointly explore the spatial and semantic relations
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of attributes. However, such relations have not been fully
exploited in traditional methods. Earlier methods solve the
attribute recognition problem by learning a separate bi-
nary classifier for each of the attributes (Deng et al. 2014;
Sudowe, Spitzer, and Leibe 2015). In such way, the re-
lationships between attributes are simply ignored. To as-
sociate attributes with their corresponding regions, some
methods employ auxiliary pose or part supervision infor-
mation to learn part-based models (Zhang et al. 2014;
Li et al. 2016c) and others formulate recognition as a weakly
supervised localization problem using attention mechanism
(Liu et al. 2017b; Zhu et al. 2017; Sarafianos and Kakadiaris
2018). While better recognition accuracy can be achieved
with spatial context learning, these methods fail to capture
semantic relations of attributes.

To model attribute relations at semantic level, some meth-
ods employ probabilistic graphical models (Chen, Gal-
lagher, and Girod 2012) or structured inference models (Hu
et al. 2016). Based on statistical hand-crafted features or
a holistic deep representation model, these methods fail
to consider spatial distribution of different attributes. The
recognition task can also be formulated as a sequential pre-
diction process by adopting sequential encoder-decoder ar-
chitecture (Wang et al. 2017) to model the high-order de-
pendencies among attributes. Although benefiting from the
sequential prediction framework, the pairwise relations be-
tween attributes may not be described. Besides, the encoder-
decoder model is deep considering RNN unrolling, which
is difficult to optimize as the length of prediction sequence
increases.

In this work, pedestrian attribute recognition is also for-
mulated as a sequential prediction problem. A graph-based
reasoning framework is proposed to jointly model spatial
and semantic relations of region-region, attribute-attribute,
and region-attribute. For each pedestrian image, the image
regions and corresponding semantic attributes are respec-
tively represented as nodes in a spatial graph and a di-
rected semantic graph. Unlike existing methods which em-
ploy RNNs (Wang et al. 2016; Liu et al. 2017a; Wang et al.
2017) to characterize latent high-order dependencies, pair-
wise relations can be captured by performing message pass-
ing inside each graph using the Graph Convolution Network
(GCN) (Kipf and Welling 2017). To better explore relations
between regions and attributes, the output representations of



the two graphs are mutually embedded as additional inputs
to guide the relational learning for each other. It’s achieved
by two sub-networks, which decompose the mutual embed-
ding into two separate feed-forward streams to avoid the
existence of closed loops. In the first sub-network, the spa-
tial graph is first introduced to capture similarity and topo-
logical relations between image regions. The spatial con-
text representation, which is obtained by performing aver-
age pooling over the outputs of all region nodes, is then em-
bedded into semantic space to guide relational learning be-
tween attributes on the directed semantic graph. In the sec-
ond sub-network, a directed semantic graph is first adopted
to model semantic dependencies of attributes along the pre-
diction path. The output of each attribute node is embed-
ded into spatial graph to perform semantic-aware feature
learning for next attribute. The two sub-networks are ag-
gregated together to perform joint spatial and semantic re-
lational learning for sequential attribute recognition.

The contributions of this paper are: (1) A visual-semantic
graph reasoning framework is proposed to jointly model spa-
tial and semantic relations for sequential pedestrian attribute
prediction. (2) A novel end-to-end architecture is presented
based on spatial and semantic graphs, which not only cap-
ture spatial relations between regions and potential seman-
tic relations between attributes by performing graph convo-
lutions inside each graph, but also model the relations be-
tween regions and attributes by performing mutual embed-
ding between the two graphs to guide the relational learning
for each other. (3) The proposed method is evaluated on 3
large-scale pedestrian attribute benchmarks including PETA
(Deng et al. 2014), RAP (Li et al. 2016a) and PA-100k (Liu
et al. 2017b). Experiments show superiority of the proposed
method over state-of-the-art methods and effectiveness of
our joint GCN structures for sequential attribute prediction.

Related Work
Pedestrian Attribute Recognition

Pedestrian attribute has been applied in a variety of vision
tasks (Layne et al. 2012; Jaha and Nixon 2014; Wang et al.
2018). Earlier pedestrian attribute models (Zhu et al. 2013;
Deng et al. 2014) treated multiple attributes independently
and trained a sperate classifier for each of the attributes.
Later, CNNs have been introduced for image feature learn-
ing and joint multi-attribute classification (Sudowe, Spitzer,
and Leibe 2015; Li, Chen, and Huang 2015). These deep
methods are based on holistic image representations, and
may have limited capability to recognize attributes covering
fine-grained details. Motivated by part-based models (Bour-
dev, Maji, and Malik 2011), (Zhang et al. 2014) and (Li et al.
2016¢) employed body-part detectors for feature representa-
tions to recognize human attributes. However, the part detec-
tors trained with auxiliary images make strong assumptions
on image qualities, which may introduce additional noise
when applied in surveillance data. Some methods formu-
late attribute recognition as a weakly supervised localization
problem using attention mechanism. (Liu et al. 2017b) pro-
posed multi-directional attention modules to learn attention-
strengthened features at multiple levels and scales. (Sarafi-
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anos and Kakadiaris 2018) extended the work of (Zhu et
al. 2017) by adding penalties on attention masks which
have high prediction variance and introducing a weighted
loss function for an attention aggregation model. Although
recognition accuracy has been significantly improved, the
generated attention masks are regularized by typical con-
volution operations, which make the semantic relations be-
tween attributes less interpretable.

On the other hand, semantic relations between attributes
have also been studied. (Chen, Gallagher, and Girod 2012)
explored the mutual dependencies between cloth attributes
using the Conditional Random Fields (CRFs). However,
such graphical inference model fails to take spatial context
into consideration, thus may not be able to describe the un-
derlying spatial relations between attributes. Moreover, the
attribute classifiers and CRF are optimized separately in-
stead of being unified into an end-to-end inference model.
Motivated by recent success of sequential multi-label pre-
diction models (Wang et al. 2016; Liu et al. 2017a), (Wang
et al. 2017) proposed a RNN encoder-decoder based frame-
work to jointly learn image level context and attribute level
sequential correlation. As the RNN encoder-decoder mainly
characterizes high-order dependencies of attributes, the pair-
wise relations may not be described.

Graphical Models

Reasoning on pairwise relations has been proved to be ben-
eficial to a variety of vision tasks including object recogni-
tion (Gkioxari et al. 2018; Chen et al. 2018), video under-
standing (Ma et al. 2018), and action recognition (Gkioxari,
Girshick, and Malik 2015). In multi-label image classifica-
tion problem, CRF is often applied to model the dependen-
cies between multiple labels (Xue et al. 2011; Li, Zhao, and
Guo 2014; Li et al. 2016b). However, these methods also fail
to explore label relations in spatial layout. Instead of per-
forming iterative mean-field approximation, simpler graph-
based neural networks (Scarselli et al. 2009; Li et al. 2015;
Marino, Salakhutdinov, and Gupta 2017) have been pro-
posed to unify the inference procedure into an end-to-end
model. In this paper, the Graph Convolutional Network
(GCN) (Kipf and Welling 2017), which was originally pro-
posed to perform semi-supervised classification in language
processing, is utilized for relational reasoning. The GCN
serves as basic layers for the proposed framework to jointly
model the spatial and semantic relations between pedestrian
attributes.

Approach

In this paper, pedestrian attribute recognition is treated as a
sequential attribute prediction problem. Different from ex-
isting methods which employ RNNs to describe latent high-
order dependencies of attributes, pairwise relations can be
modeled via graph convolutions in the proposed graph-based
reasoning framework. In this section, the Graph Convolu-
tional Network will be first introduced. The proposed frame-
work and its components will be introduced in the following.



Visual-to-semantic Sub-network

Region Nodes
Semantic-to-visual Sub-network

“Start” Token '

Lower Casuwll_l_—:>

.

<—Order

Attribute Nodes

Pooling over
Region Nodes .

Embedding™--

Output of
Semantic Graph

vt 4

—a
Embedding

\ 4

Shift Right
Prediction

ceccccccccccs’

.

Ahgn

o0

I Pooling
L]

Figure 1: Overview of the proposed visual-semantic graph reasoning framework. It consists of two sub-networks, which perform
mutual embedding between the spatial and semantic graphs in complementary ways to achieve joint visual-semantic reasoning.

Graph Convolutional Network

The Graph Convolutional Network (GCN) is proposed to
perform reasoning on graphs. Unlike standard convolutions
which operate on a local regular grid, the graph convolutions
compute the response of a node based on its neighbors de-
fined by the graph relations. Thus, message passing is per-
formed inside the graphs with the graph convolutions. Let
Z < RN denotes the input features of the graph, where N
denotes the number of entities, d is the number of the feature
channels. Mathematically, graph convolutions for one layer
can be represented as:

G =AZW @)
where A € RV represents the adjacency matrix of the
graph, which can either be pre-defined or learned from data.
W is the weight matrix of the layer. To achieve effective
training, two non-linear operations including Layer Normal-
ization (Ba, Kiros, and Hinton 2016) and ReLLU activation
are usually applied after each convolutional layer before the
features are forwarded to the next layer.

Visual-semantic Graph Reasoning

Given a pedestrian image I, our goal is to make prediction of
its attributes yq, ..., Y. It’s intrinsically a multi-label clas-
sification problem since a pedestrian image can be annotated
by multiple attributes. Since attribute recognition is formu-
lated as a sequential prediction problem, the joint probability
over yi, ..., Yk can be modeled in the chain rule as,

K
H P(Yklla Yo, ~-~7Yk—1)
k=1

In our framework, the relations between image regions are
modeled on a spatial graph and the dependencies between
attributes are modeled on a semantic graph with directed
edges. The joint reasoning is performed in a mutually guided
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way with two sub-networks, which will be introduced in de-
tails in the following.

Visual-to-semantic Sub-network. In this sub-network,
the spatial graph is first used to learn image feature repre-
sentations to capture spatial relations between different body
parts of the whole pedestrian image. The learned spatial con-
text is then embedded into semantic space to guide relational
learning between attributes on the directed semantic graph.
In spatial graph, each node corresponds to one specific im-
age part region and the relations between regions are mod-
eled by edges. Two types of spatial relations including simi-
larity relations and topological relations are described. They
are respectively modeled by two sub-graphs, which share the
nodes but employ different edges.

The first sub-graph measures visual similarity in image
feature space. Assuming that the input of the spatial graph
X = (X1,X2,...,xpr) " consists of the visual features ex-
tracted from a convolutional neural network, where M de-
notes the number of locations of the convolutional feature
maps and x; corresponds to ¢-th image region. The pairwise
similarity between every two part regions can be computed
by the function,

Fo(xi,%;) = 0s(x:) Tl (x;) 3)

where @4 (x) = wsx and ¢, (x) = w,x denote two different
linear transformations of the visual features. The weight ma-
trices wy € R¥? and w’, € R%*? can be learned through
back propagation. After being computed using Eq.(3), the
similarity adjacency matrix is normalized using a softmax
function along each row,

exp(Fs (x4, %))
YIL, exp(Fy(xi, ;)

Besides the similarity relations between parts, the topologi-
cal structures are also accounted for by connecting one part

A, (i,)) = “



with its neighbor regions. The edge values capturing the
topological relations between body parts can be computed
as,

exp(—d;;/A)

M
Zj:l exp(—d;;/A)
where d;; denotes pixel-level distance between the two
parts, and A is the scaling factor. Softmax is also performed
as normalization on each row so that the sum of all edge
weights connected to one part is 1.

With the edge weights of both sub-graphs, the outputs of
the spatial graph are computed by combining the two sub-
graphs together,

G, =A, XW, +A,XW,

A (i) =

&)

(6)

where W € R4*4 and W, € R%*4 are weight matrices
for two sub-graphs. After convolution operations, average
pooling is performed over all nodes of spatial graph to obtain
the spatial context representation g, € R.

Conditioned on spatial context, the directed semantic
graph is employed to perform relational learning in semantic
space. In this graph, each node corresponds to one specific
semantic attribute. Given a pedestrian image, we use R =
(ro,r1,...,rx) € RF¥EFD to denote the embedding ma-
trix of its ground-truth semantic attributes aligned according
to a prediction order, where each column r; € R/ is an em-
bedding vector and rg denotes the “start” token. To make
use of order information, positional encoding (Gehring et
al. 2017) is performed by embedding the absolute position
of attributes P = (pg,p1,...,px) € RIXEFD where
p; € R/. They are combined together to obtain seman-
tic attribute representations on an ordered prediction path
E = (eg,e1,....,ex) € RIXEHD where e, = ry + pr.
Further, spatial context is embedded into each node by the
function,

C=E@& (Usg,) N

where U, € R7*? denotes the learnable projection matrix.
@ operation is computed by adding the embedding vector
to each column of matrix E. The i-th column ¢; € R/ of
C e R/*(E+D) s the input representation of i-th node. To
ensure the prediction of current attribute only has relations
with previously known outputs, the i-th node is only con-
nected with nodes whose subscript < 7. For those connected
edges, the edge weights can be computed as,

Fe(ci,c)) = we(ei) " vilc)) ®
where ¢ (-) and ¢}(-) are linear transformation functions
with weight matrices we € R/*/ and w/, € R/*/. Simi-
larly, A; € RE+HDX(E+1) i also computed by normalizing
the connected edge weights along each row, and its upper

triangular elements will be 0. The convolutions on semantic
graph can be represented as,

G:=A.C"W,
where W; € Rf*f denotes the weight matrix.

€))
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After performing convolutions on semantic graph, the
output representations G € RU+1)X/ are used for sequen-
tial attribute prediction. The output supervision is obtained
by right shifting the input sequence by one position, which
means the output of k-th node g¥ € R/ is used to predict
(k+1)-th attribute according to the prediction order.

Semantic-to-visual Sub-network. In this sub-network,
the directed semantic graph is first adopted to capture se-
mantic relations between attributes. At each prediction step,
the output of current attribute node is embedded into spatial
graph to perform semantic-aware feature learning to predict
the next attribute. In this sub-network, attribute nodes are
represented by E = (e, e1,...,ex) € R/EHD and its
edge values can be computed as,

Fe(eie;) = pe(ei) ¢l (e)) (10)
where the weights of functions ¢.(-) and . (-) are differ-
ent from Eq.(8). Similarly, current attribute is only con-
nected with previous existed attributes in the adjacency ma-
trix. After obtaining the normalized adjacency matrix A, €
REHDX(K+1D) “the convolution operations can be repre-
sented as,

G.=AE"W, (11)
where W, € R7*/ denotes the weight matrix. G, €
RE+DXS are outputs of the attribute nodes, in which each
row g¥ € R/ denotes the semantic representation at k-th
step.

The learned semantic representation is embedded into
each region node of the spatial graph. Thus, the input rep-
resentations of region nodes at k-th prediction step can be
computed as,

D* =X (Ucg))" (12)
where U, € R?*/ is used to project g* into image feature

space. The edge values capturing the similarity between re-
gion nodes can be represented as,

F3(df,df) = ps(df) "k (d]) (13)
where d¥ € R? is i-th row of D representing the i-th im-
age region embedded with current semantic representation.
In such way, visual features related to different attributes can
be extracted by learning different relations between regions
guided by semantic context. The weight matrices of func-
tions ¢;(+) and ¢’ (-) are shared across entire sequential pre-
diction process in consideration of computation efficiency.
The convolution operations on spatial graph can be repre-
sented as,

Gt = Af D"W;, + A, D"W;, (14)

where the first term characterizes similarity relations be-
tween regions guided by semantic context. In second term,
the adjacency matrix A, remains unchanged to preserve the
topological structure. After convolution operations, average
pooling is performed over all region nodes of G¥ to obtain
the representation g € R? at k-th step. Totally K +1 repre-

sentations g%, e g? +1 can be obtained by embedding each

g” into the spatial graph.



Training and Inference

The two sub-networks are unified into an end-to-end model
to jointly perform visual-semantic graph-based reasoning.
At each prediction step, the current output representations
of the two sub-networks are concatenated together to pre-
dict the next attribute. The output supervision is obtained by
right shifting the ground-truth attributes aligned according
to the pre-defined prediction order and adding an additional
“end” token at the last position. The conditional probability
at k-th predication step can be represented by,

g
P(yill,y0, .-, ¥k—1) < exp(W,, { ﬁ1]) (15)

S

where W, € R(EHDX(@+F) g the weight matrix and C is
the total number of attributes.

The entire network is trained with BCE loss after nor-
malizing the probability scores with softmax function. Dur-
ing the training process, the computation of output repre-
sentations and back-propagation can be parallelized across
all nodes in the graph, which is in contrast with traditional
RNN encoder-decoder based methods which perform infor-
mation propagation through the entire long-range sequences.
To boost the performance of sequential prediction meth-
ods, some policies have been proposed to explore prediction
paths, such as beam search (Wang et al. 2016) and order en-
semble (Wang et al. 2017). In this paper, the later scheme is
adopted since it shows more reliable results compared with
the former. Besides, the prediction orders are also defined
similar as (Wang et al. 2017).

In the testing stage, the proposed model performs sequen-
tial multi-attribute prediction given each pedestrian image.
At each prediction step, current attribute is predicted condi-
tioned on visual information of image / and previously pre-
dicted attributes y; = arg max P(yx|I,yo, ..., Yk—1). Once
predicted, current attribute is added as nodes in the seman-
tic graph and used for next prediction. This procedure is re-
peated until the “end” token is met or the model reaches its
maximum prediction length.

Experiments

Datasets. The proposed method is evaluated on three pub-
licly available pedestrian attribute datasets: (1) The PEdes-
Trian Attribute (PETA) dataset (Deng et al. 2014) con-
sists of 19, 000 person images collected from 10 small-
scale person datasets. Each image is labelled with 61 bi-
nary attributes and 4 multi-class attributes. This paper fol-
lows the same experimental protocal as (Deng et al. 2014;
2015). The whole dataset is randomly divided into three
non-overlapping partitions: 9500 for training, 1900 for ver-
ification, and 7600 for evaluation. 35 attributes whose pos-
itive ratios are higher than 5% are used for evaluation. (2)
The Richly Annotated Pedestrian (RAP) attribute dataset
(Li et al. 2016a) contains 41,585 images drawn from 26
indoor surveillance cameras. Each image is labelled with
69 binary attributes and 3 multi-class attributes. Following
the official protocol (Li et al. 2016a), the whole dataset
is split into 33,268 training images and 8,317 test images.
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Metric
Dataset Method mA Acc Pre Recall F1
MRFr2 75.60 - - - -
ELF-mm | 75.21 43.68 4945 7424 59.36
FC7-mm | 76.65 4541 5133 75.14 61.00
FC6-mm | 77.69 48.31 54.06 7649 63.35
ACN 81.15 73.66 84.06 8126 82.64
PETA | Deep-Mar | 82.89 75.07 83.68 83.14 8341
HP-net 81.77 76.13 8492 8324 84.07
JRL 85.67 - 86.03 85.34 85.42
VeSPA 83.45 77773 86.18 84.81 8549
MsVAA | 84.59 78.56 86.79 86.12 86.46
Ours 8521 81.82 8843 8842 88.42
MRFr2 - - - - -
ELF-mm | 69.94 29.29 32.84 71.18 4495
FC7-mm | 7228 31.72 3575 71.78 47.73
FC6-mm | 73.32 33.37 37.57 7323 49.66
ACN 69.66 62.61 80.12 7226 7598
RAP Deep-Mar | 73.79 62.02 7492 76.21 75.56
HP-net 76.12 6539 77.33 78.79 78.05
JRL 77.81 - 78.11 7898 78.58
VeSPA 7770 67.35 79.51 79.67 79.59
MsVAA - - - - -
Ours 7791 70.04 82.05 80.64 81.34
Deep-Mar | 72.70 70.39 82.24 8042 81.32
PA100k HP-net 7421 72.19 8297 82.09 82.53
Ours 79.52 80.58 89.40 87.15 88.26

Table 1: Comparisons against 10 state-of-the-art methods on
three datasets. 1°¢ and 2" best results in bold fonts and
underlined, respectively.

51 binary attributes are used to evaluate the recognition
performance. (3) The PA-100k Dataset (Liu et al. 2017b)
consists of 100,000 pedestrian images from 598 outdoor
scenes. Each image is described with 26 commonly used at-
tributes. The whole dataset is split into training, validation
and test sets with a ratio of 8:1:1 (Liu et al. 2017b). For both
PETA and RAP datasets, the multi-class attributes are con-
verted into binary attributes as in (Deng et al. 2014; 2015;
Li et al. 2016a).

Performance Metrics. Five metrics are adopted to evalu-
ate attribute recognition performance. (1) Class-based: For
each attribute class, the classification accuracy of positive
and negative samples are computed respectively and then
averaged as the recognition score for this attribute. mA is
then computed by averaging the recognition scores over
all attributes (Deng et al. 2014). (2) Instance-based: Ac-
curacy, precision, recall and Fl-score are used to measure
instance-based (Li et al. 2016a) attribute recognition re-
sults. For accuracy, precision and recall, we first compute
the scores of predicted attributes against the groundtruth for
each test image and then average the scores over all test
images. The Fl-score is computed based on precision and
recall. Different from mA that assume independence be-
tween attributes, instance-based evaluation metrics consider
the inter-attribute correlation.

Compared Methods. The proposed method is compared
against 10 state-of-the-art models. (1) MRFr2 (Deng et
al. 2015) exploits the context of neighbouring images by
Markov Random Field for mining the visual appearance
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Figure 2: Mean Accuracy (mA) for all attributes on three
datasets. Baseline and our method are marked with blue and

red bars respectively.

proximity relations between different images; (2) ELF-mm
(Gray and Tao 2008) employs SVM classifier with En-
semble of Localized Features (ELF) for attribute recogni-
tion; (3)-(4) FC7-mm and FC6-mm replace the hand-crafted
ELF features with CNN features (FC7 and FC6 output of
the AlexNet); (5) Attributes Convolutional Network (ACN)
(Sudowe, Spitzer, and Leibe 2015) jointly trains a mono-
lithic CNN model for all attributes, which allows to share
weights and transfer knowledge among different attributes;
(6) DeepMAR (Li, Chen, and Huang 2015) is a joint at-
tribute learning model which considers inter-attribute cor-
relation by weighted cross entropy loss function; (7) Hy-
draPlus Network (HP-net) (Liu et al. 2017b) is an atten-
tion based method that employs multi-directional atten-
tion modules to train multi-level and multi-scale attention-
strengthened features for pedestrian analysis; (8) Joint Re-
current Learning (JRL) model (Wang et al. 2017) consid-
ers attribute recognition as a sequence-to-sequence mapping
problem and employs RNN encoder-decoder to jointly learn
image level context and attribute level sequential correlation.
(9) View-sensitive Pedestrian Attribute (VeSPA) model (Sar-
fraz et al. 2017) jointly learns a coarse view predictor and
view-dependent image features for attribute inference. (10)
MsVAA (Sarafianos and Kakadiaris 2018) is based on vi-
sual attention aggregation on multi-scales, combined with
additional penalties on attention masks and a weighted loss
function.

Implementation Details. In this paper, ResNet-50 is used
to extract convolutional features for pedestrian images. The
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Metric

Dataset Method mA Acc Pre Recall F1
ResNet-50 | 8127 7669 S7.33 8276 84.09
G. | 8165 7680 8794 8344 8563
PETA G. | 8385 7965 8705 8609 8656
G... |8496 8110 8791 87.84 87.87
G. .. |8432 8092 8763 8676 87.19
Ours [ 8521 8182 8843 8842 S8.42
ResNet-50 | 7512 6667 8166 7652 79.00
G. | 7554 6735 8134 7637 7878
RAP G. | 7595 6874 8094 78.63 79.76
G... |7686 6957 8093 79.54 8023
G. .. |7654 6976 80.86 7904 79.94
Ours [ 7791 70.04 8205 S0.64 SI.34
ResNet-50 | 7631 7676 88.62 8322 8584
G. | 7705 7682 8875 8345 86.02
G. | 7854 7893 8845 8641 8742
PALOOK | ™ 17903 7954 88.87 8675 87.80
. | 7854 7895 8853 8618 8734
Ours | 79.52 80.58 89.40 8715 8826

Table 2: Effect of each component of the proposed network.
15t and 279 best results in bold fonts and underlined.

output of last convolutional layer (output of “Res_5c” block)
is used as the visual input to spatial graph. The original
pedestrian images are resized to 128 x256 pixels. Stochas-
tic gradient descend algorithm (Sutskever et al. 2013) is em-
ployed for training, with momentum of 0.9, and weight de-
cay of 0.0005. The batch size is set to 32. The initial learning
rate is set to 102 for the first 20 epoches, and decreased to
10~—* for the second 20 epoches. The model is implemented
with pytorch.

Comparison to the State-of-the-Arts

Table 1 shows evaluations on three datasets. The proposed
method shows the best performance on all three datasets
measured by five evaluation metrics, except it achieves
second best score in mA on PETA dataset. Though JRL
model reports a minor gain in mA on PETA dataset, how-
ever, our method outperforms JRL in precision, recall and
Fl-score with a significant margin (2.40%, 3.08%, and
3.00%, respectively). MsVAA method has achieved sec-
ond best scores on 4 instance-based metrics, despite adopt-
ing a stronger ResNet-101 baseline. On RAP dataset, ACN
model presents the second best score in precision but with
a much lower recall. It indicates that ACN tends to miss
some attributes in recognition by simply adopting a holis-
tic representation model. In contrast, the proposed method
achieves significant improvement on all instance-based met-
rics due to the visual-semantic graph-based reasoning. JRL
and VeSPA show competitive results on this dataset. On PA-
100k dataset, the proposed method has achieved greater per-
formance improvement. It further demonstrates the effec-
tiveness of the proposed method in modelling the spatial and
semantic relations of attributes on graphs.

Ablation Study

Quantitative Evaluation. Besides the comparison with
state-of-the-art methods, we also conduct experiments to
evaluate the effectiveness of each component of the pro-
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Calling
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17-30, BodyNormal, Customer, hs-
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Figure 3: Qualitative evaluation of some pedestrian images from three datasets. The correct and wrong predictions are marked

in green and red, respectively.

posed network, which is shown in Table 2. (1) The origi-
nal ResNet-50 is used as the baseline which is fine-tuned
on each of the datasets. (2) A spatial graph is added on top
of the final convolutional layer of ResNet-50 to explore the
spatial relations between different image regions. The out-
put representation of spatial graph is then average-pooled
and followed by a classification layer. (3) A directed seman-
tic graph is adopted to model semantic dependencies be-
tween attributes during training, which directly use ResNet-
50 FC features as visual input. (4)-(5) Each of the two
sub-networks is used to perform attribute recognition inde-
pendently. These models are compared with the proposed
method in the same experimental settings.

Fig.2 reports the overlapped histograms of mean Accu-
racy (mA) on all three datasets for all attributes by baseline
ResNet-50 model and the proposed method. The bars are
sorted in descending order according to the larger mA be-
tween the two methods at one attribute. It is evident that the
proposed method has achieved significant performance gain
on most attributes on all three datasets. For some attributes
which either only cover small parts of the images (“Sandals”
and “V-neck” in PETA, “BaldHead” and “Attach-PaperBag”
in RAP) or require deduction from contextual information
(“action-Calling” in RAP, “AgeOver60” in PA-100k), the
improvement is particularly prominent. This can be con-
tributed to the effectiveness of visual-semantic graph rea-
soning in attribute recognition.

Qualitative Evaluation. Fig.3 shows instance-based
recognition results of some pedestrian images from three
datasets. For each examplar image, the correct and wrong
predicted attributes are respectively marked in green and
red color. The true, false and missed numbers of predicted
attributes are also given. Results show that the baseline
model is prone to miss some attributes in recognition, espe-
cially those describing fine-grained pedestrian details. This
is consistent with the reported relatively low recall rate of
baseline model in qualitative evaluation. On the other hands,
by performing visual-semantic graph-based reasoning, the
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proposed method has recognized more detailed attributes
while making less mistakes. In both RAP exemplars, the
baseline model has failed to recognize the person’s actions.
This may caused by its limited capability to infer with
contextual clues. In first exemplar of PA-100k, the person
is partially occluded. This brings disturbance to baseline
model, which predicts sex incorrectly and fails to recognize
the attributes of “Glasses”, “Backpack”, and “UpperSplice”.
In second image of PA-100k, the person’s appearance
is distracted by zebra crossing from background, which
leads to incorrect recognition of upper-body attributes.
In contrast, all attributes are corrected predicted with the
proposed method.

Conclusions

A visual-semantic graph reasoning framework is proposed
to jointly model spatial and semantic relations for sequen-
tial attribute prediction. It is achieved by performing mu-
tual embedding between the spatial and semantic graphs to
guide the relational learning for each other using two sub-
networks. Experimental results on PETA, RAP and PA-100k
pedestrian attribute datasets demonstrate that the proposed
graph-based reasoning framework significantly outperforms
a wide range of state-of-the-art methods. Moreover, the
proposed method is shown to be more effective in recog-
nizing some hard attributes against a variety of challenge
factors.
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